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1. INTRODUCTION

1.1 Objectives

Because the cost of airborne operations has increased

dramatically in recent years, ground-based simulators have come to

play an ever-increasing role in the training of Air Force pilots.

Consequently, one of the major forces (if not the major force)

driving training costs is the number of trainee and instructor

hours required to achieve desired pro ciency in the training

simulator. Procedures that can improve training efficiency have

the potential to improve the flying skills of Air Force pilots

while substantially reducing training costs.

Aside from issues of cost, ground-based simulators exhibit

both advantages and disadvantages with regard to traininq

effectiveness. The primary disadvantage is that the perceptual

environment experienced in actual flight must be approximated to

some extent in the simulator. For example, limited motion travel

inherent in ground-based simulators cannot provide the same

whole-body motion stimuli encountered in a free-moving airplane.

Similarly, it is not practical at present to attempt to replicate

the external visual scene in every detail. On the other hand,

perceptual environment created in the simulator may be designed to

optimize training. In particular, there exists the option to

-1-
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increase training efficiency by enhancing cues normally present in

flight and/or providing additional cues not normally present.

One of the primary tasks of both the designer and user of

training simulators is to optimize the perceptual environment, in a

manner consistent with limitations of cost and technology, to

maximize training effectiveness and efficiency. At present,

however, there is no detailed, validated theory that allows one to

predict, from knowledge of the informational environment, the

degree and rate of acquisition of flying skills.

Prior to this study, a multi-year program of research was

conducted for the Air Force to begin development of an analytical

model that would allow one to reliably predict the effects of

whole-body motion cues on pilot response behavior in a variety of

situations [1-4]. Development of a mathematical model of this sort

was desired to allow one to address analytically the following

issues:

1. The extent to which a trained pilot uses motion cues in

specific control situations.

2. The influences of motion cues on the rate at which a

trainee pilot learns a specific control task.

3. Effects of simulator limitations on the pilot's ability to

use motion cues at various stages of learning.

-2-
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4. Design of control laws for ground-based motion simulators.

5. Extrapolation of fixed-base simulation to a moving-base

environment.

The study program reviewed in this report was initiated to

pursue the same long-term goal of modeling the effects of

whole-body motion cues on pilot performance. During the course of

the study, emphasis was sh.fted to the area of flight-skill

development and, in particular, to the development of a model for

relating skill acquisition to the perceptual environment.

Significant progress was made during this program in terms of

methodological development and in terms of analytically

characterizing the influence of task structure on operator response

behavior in continuous control tasks.

1.2 Organization of Material

The major tasks completed during this study are described in

Chapter 2, largely in the order in which they were performed. To

aid the reader in assimilating the important results, these task

descriptions are presented in the format of expanded summaries.

Detailed documentation is contained in the Appendices.

The following tasks were performed:

-3-



Report No. 4645 Bolt Beranek and Newman Inc.

a. Experiment Design. A set of experiments was designed to

test hypotheses concerning attention-sharing penalties

among whole-body motion cues and instrument visual cues.

While Air Force research priorities did not provide for

performance of this experiment, various issues of

multi-modality cue utilization remain to be resolved, and

the design is included in this report as a potential guide

to future research (Section 2.1; Appendix A).

b. Model Extension. The computerized implementation of the

pilot model was extended to allow both (1) a revised

treatment of certain motor-related model parameters, and

(2) consideration of a deficient model of the task

environment on the part of the pilot (Section 2.2;

Appendix B).

c. Identification of Independent Model Parameters. An

existing scheme for automatically identifying

"pilot-related" model parameters from experimental data

was refined and extended to allow qualitative tests of

significance (Section 2.3; Appendix C).

d. Analysis of Control Strategy Development. Manual control

data obtained in a study of delayed motion cues were

analyzed to quantify the relationship between

-4-
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pilot-related model parameters, the state of training, and

the presence or absence of whole-body motion cues (Section

2.4; Appendix D).

e. Limitations on Psychomotor Performance. Additional model

analysis was conducted to further define the relationship

between pilot response limitations and task structure,

both for subjects trained to asymptotic performance levels

and for subjects early in training (Section 2.5; Appendix

E).

f. Multiplicative Motir Noise Model. A small study was

performed to explore the utility of a multiplicative motor

noise process to account for certain apparent task-related

changes in independent model parameters (Section 2.6;

Appendix F).

g. Literature Review. A brief literature review was

conducted on adaptive control and identification

algorithms that might prove useful in formulating models

for the learning process in continuous control and

estimation tasks (Appendix G).

Before summarizing the results obtained in this study, we

first provide a brief review of the optimal control model (OCM) for

pilot/vehicle systems that is the basis for the analytical work

described in this report.

-5-
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1.3 The Optimal Control Model (OCM)

The reader is assumed to be generally familiar with the

optimal-control model. This model has been used in numerous

studies performed for the Air Force (1-4]. For the reader's

convenience we review here the pilot-centered components of the

model.

We consider two categories of pilot-related model elements:

parameters that reflect the human's perceptual-motor

(information-processing) limitations, and elements related to the

operator's adapt.ve response strategy.

The following parameters reflect perceptual-motor limitations:

1. Observation noise. Each perceptual variable utilized by the

operator is assumed to be perturbed by a white Gaussian noise

process that is linearly uncorrelated with other pilot-related

or external noise sources. In certain idealized laboratory

tracking situations, the variance of the observation noise

tends to scale with the variance of the corresponding display

variable [5], in which case we may characterize this limitation

by an observation noise/signal ratio. A more complex submodel

for observation noise may be considered to account for

limitations such as perceptual thresholds (6,7] and

attention-sharing 18,9). In general, the observation noise

-6-
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accounts for most of the operator's "remnant" -- the portion of

the control input that is linearly correlated with external

inputs. For trained subjects, remnant may reasonably be

attributed to fundamental information-processing limitations as

suggested above (provided the system to be controlled is linear

-- an underlying assumption of the OCM). For untrained

subjects, observation noise may reflect within-trial variations

in the linear aspect of the operator's response strategy.

2. Time Delay. A single (scalar) time delay is added to each

display variable to account for the various sources of delay

associated with information acquisition, transformation, and

response execution.

3. Motor Time Constant. The operator's control response is

assumed to be smoothed by a filter that accounts for an

operator bandwidth constraint. In the model, this constraint

arises directly as a result of a penalty on control rate

introduced into the performance criterion. The constraint may

mimic actual physiological constraints of the neuromotor system

or it may reflect subjective limitations imposed by the

operator. The time constant of this first-order filter is

called the "motor time constant".

-7--
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4. Motor Noise. Just as an observation noise is postulated to

account for perceptual and central processing inadequacies, a

motor noise is introduced to account for an inability to

generate noise-free control actions. In many applications this

noise level is insignificant in comparison to the observation

noise, but where very precise control is important to the

conditions being analyzed, motor noise can assume greater

significance in the model. Early implementations of the model

treated this noise as a disturbance added to the control

response commanded by the operator. In current OCM usage,

motor noise is generally considered to be added to commanded

control rate in order to provide a better match to

low-frequency response behavior to the pilot describing

function at low frequencies [il.

5. Cost Functions. Except for the cost weighting on control rate,

which we relate to a motor time constant as discussed above,

the coefficients of the quadratic performance index are

generally considered as part of the task description, rather

than as human operator limitations. Nevertheless, the operator

can only minimize what he perceives to be the performance

index. To the extent this perception differs from the "true"

performance index (as defined by the experimenter), the

performance index must be considered as an operator-related

-8



Report No. 4645 Bolt Beranek and Newman Inc.

parameter. One might expect such differences to occur early in

training.

The adaptive portion of the operator's response is represented

collectively by three elements of the human operator model: The

Kalman estimator, optimal predictor, and optimal control law. The

function of the Kalman estimator and predictor is to generate the

best estimate of the current state of system variables, based on

the noisy, delayed perceptual information available. It is assumed

in these elements that the operator has both an internal model of

the dynamics of the system being controlled, and a representation

of the statistics of the disturbances driving the system.

Given the best estimate of the current system state, a set of

control gains or weighting factors are assigned to the elements of

the estimated state, in order to produce control actions that will

minimize the defined performance criterion. As might be expected,

the particular choice of the performance criterion determines the

weighting factors, and thus the effective control law gains.

-9-
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2. SUMMARY OF RESULTS

2.1 Design of a Multi-Axis, Multi-Cue Experiment

The results of recent studies of motion cue utilization have

been consistent with the hypothesis that attention must be shared

between visual and motion cues in the same axis of control; that

is, the pilot's ability to perceive and use cues from one modality

is degraded by the requirement to use cues from the other modality

[1-4]. The data are not sufficient, however, to determine

conclusively whether or not such interference effects need to be

considered when modeling closed-loop pilot/vehicle systems.

As part of this contractual effort, a set of experiments was

designed to test various hypotheses regarding interference (or lack

thereof) among whole-body motion cues and visual cues, both within

a single axis of control and between two uncoupled control tasks.

Experimental conditions were selected to provide a task environment

for which performance would be sensitive to attention-sharing

limitations. The experiment design was based, in part, on the

then-existing response capabilities of the Multi-Axis Tracking

Simulator (MATS) facility at AMRL.

This experiment was not conducted during the course of this

three-year effort, as originally anticipated, because of a shift in

Air Force research priorities. Nevertheless, the issues addressed

-10-
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by the proposed experiment are still very much relevant to the

problem of understanding pilot performance in realistic in-flight

and in-simulator control tasks. We therefore present, in Appendix

A, the results of this design effort as a potential guide to future

experimentation.

A two-axis attitude regulation task is defined in which the
/

pilot's task is to maintain a simulated fighter-like vehicle in

straight and level flight in the presence of gust-like

disturbances. Model analysis indicates that the recommended task

environment will provide a sensitive test of various hypotheses

concerning the interaction between the presence or absence of

whole-body motion cues, task loading, and p.lot/vehicle

performance. Model predictions contained in Appendix A also can be

used to help select gust amplitudes and control gains for

implementation of the experiment.

Six experimental conditions are suggested: (1) pitch

regulation alone, fixed base; (2) all regulation alone, fixed base,

(3) pitch regulation alone, moving base, (4) roll regulation alone,

moving base, (5) combined pitch and roll regulation, fixed base,

and (6) combined pitch and roll regulation, moving base.

- 11 -
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2.2 Model Extension

A small effort was undertaken to update the computer

implementation of the optimal-control pilot/vehicle model to

include two modifications made since the original implementation

[1,101. Both modifications had been formulated and implemented in

separate computer programs previously; they were implemented in the

same program under this contract.

The two model refinements combined were: (1) modification of

the treatment of motor noise[l], and (2) consideration of a

non-faithful "internal model" for the human operator (101.

The revised treatment of motor noise was accomplished in the

preceding multi-year study (AFOSR Contract No. F44620-75-C-0060)

and consisted of two modifications: (a) treatment of motor noise

as a noise process added to the operator's control-rate, rather

than to his "commanded" control; and (b) the distinction between a

"driving" motor noise process injected into the controlled plant,

and a "pseudo" (or "internal") noise process used in determining

the operator's response strategy. This modification is described

in Levison, Baron and Junker [1], and the revised model has been

applied to subsequent studies of roll-axis motion.

Another modification to the model, described by Baron and

Berliner (10), was performed under contract to another agency to

- 12 -
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allow consideration of an 'internal' model that incorrectly

reflects one or more aspects of the characteristics of the actual

control-task environment (e.g., controlled plant dynamical response

properties, system delays, statistical properties of external

inputs). Prior to the current study, this model was not used by us

in performing model analysis of data obtained in motion-cue

studies. The rationale for assuming a correct internal model was

that a subject well trained on a tracking task involving a

relatively wideband plant would develop an internal model of the

task that was adequate for generating an appropriate response

strategy. The considerable saving in computation requirements,

compared to the implementation allowing for a deviate internal

model, provided further motivation for assuming a correct internal

model.

When plans were made to analyze data from an experiment

exploring delayed motion cues [111, we foresaw the likelihood that

the test subjects would have an incorrect perception (at least

early in training) of the relative phasing of visual and whole-body

motion cues. We therefore modified the computer implementation of

the OCM to allow both the revised treatment of motor noise and the

flexibility to consider deviant internal models.

Appendix B describes the formulation of the revised pilot

model.

- 13 -
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2.3 Automated Identification of Pilot-Related Model Parameters

The automated gradient search scheme for identifying

pilot-realted OCM parameters, originally reported by Lancraft and

Kleinman [12], was refined and extended under this contract. This

scheme identifies the set of independent model parameters that

provides the least-squared-error joint match to experimental

variance, gain, phase, and remnant measurements, and is described

in detail in Appendix C.

As currently implemented, the parameter identification scheme

places no constraints (other than non-negativity) on the identified

values. Now, if all independent model parameters are allowed to

vary freely to obtain a best match to a given data set, all

parameters will generally vary from one data set to the next. In

order to interpret such results, we need some method for

determining which parameter changes are "significant"; that is,

which parameter changes are necessary to account for changes in

operator response behavior due to learning or to some change in

experimental conditions. Relative magnitudes of various parameter

changes are not reliable indicators of significance: a large

change in the value of a particular model parameter may simply

reflect insensitivity of the matching error to the value of that

parameter.

- 14 -
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The cross-comparison method described in Appendix C provides

a qualitative significance test on parameter differences obtained

from modeling the results of two experimental conditions. This

method employs a numeric, non-analytic sensitivity test as

described below.

Assume that we wish to analyze two data sets, corresponding

to, say, the "baseline" and "test" experimental conditions;

specifically, we wish to determine whether or not different

parameter values are required to match these data. The null

hypothesis, then, is that a single set of parameter values yields a

near-optimal match to the "baseline" and "test" data.

To test the null hypothesis, we first identify three sets of

pilot parameters using the gradient search scheme: (1) the set

that best matches the baseline data, (2) the set that best matches

the test data, and (3) the set that provides the best joint match

to the baseline and test data. For convenience, we shall refer to

the parameters identified in step 3 as the "average parameter set".

We next compute the following four matching errors:

J(B,B) = matching error obtained from baseline data, using

parameters identified from baseline data (i.e., best match to

baseline data).

- 15 -
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J(B,A) = matching error obtained from baseline data, using

average parameter set.

J(T,T) = best match to test data.

J(T,A) - matching error obtained from test data, using average

parameter set.

Finally, we compute the following "matching error ratios":

MER(B) = J(B,A)/J(B,B), MER(T) = J(T,A)/J(T,T) and, if we wish to

reduce the results to a single number, the average of these two

error ratios.

In a qualitative sense, the greater the matching error ratios,

the more significant are the differences between the parameters

identified for the baseline and test conditions. For example, if

both matching error ratios are unity (the theoretical minimum),

then the null hypothesis is supported: there exists a single set

of parameters that provides an optimal match to both data sets.

Any differences between the baseline and test parameter sets must

be considered insignificant and can be attributed to imprecision of

the identification procedure. Conversely, if one or both matching

errors ratios are substantially greater than unity, one must reject

the null hypothesis and consider the differences in model

parameters to be "significant"; i.e., to represent true differences

in operator response behavior.

- 16 -
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2.4 Analysis of Control Strategy Development

An experimental study was performed by the Air Force's

Aerospace Medical Research Laboratory and the Human Resources

Laboratory to explore the effects of simulator delays on

performance during various stage of training. Analysis of the

experimental data was undertaken by BBN under Contract No.

F33615-76-C-5001, and was continued under the subject AFOSR study,

to explore the effects of whole-body motion cuing on control

strategy development. Preliminary results of this study have been

reported by Levison, Lancraft and Junker [11]. The results of this

task are summarized briefly here and in more detail in Appendix D.

Five separate subject groups received initial training on a

simulated roll-axis tracking task as follows: one group trained

with instrument visual cues only (the "static" group); another

group trained with combined, synchronized visual and motion cues

("synchronous motion"); and the remaining groups trained with

motion cues delayed with respect to visual cues by 80, 200, and 300

msec. All groups were trained to apparent asymptotic mean-squared

error in their initial tasks. After training, all but the

synchronous motion group trained to asymptotic performance in the

synchronous motion condition.

- 17 -
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Pre- and post-transition learning trends for the various

subject groups are shown in Figure 1. Mean-squared error is

plotted as a function of training session, where each session

consisted of four experimental trials of approximately three

minutes each. A clear performance trend is evident, with increased

asymptotic MS error scores associated with increasing motion-cue

delay. Exponential fitting of the learning curves (see Levison,

Lancraft and Junker) showed a trend toward increasing learning rate

with decreasing delay.

Frequency-response measures were obtained from selected

subjects in the static and synchronous motion groups as various

stages of training. Figure 2 compares these measures for one

member of the static group at early and late stages of

pre-transition training. The trends shown in this figure are

consistent with the improved MS error performance over the course

of training: specifically, amplitude ratio (pilot "gain")

increased at all frequencies, high-frequency phase lag was reduced,

low-frequency remnant was reduced, and high-frequency remnant was

increased.

The identification scheme described above was used to identify

pilot-related OCM parameters for various stages of training. The

following comparisons were made: (1) early pre-transition training

versus asymptotic pre-transition training, static group; (2) early
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post-transition training versus asymptotic post-transition

training, static group; and (3) early post-transition training,

static group versus 80-msec option group.

The effects of continued training were similar for both the

pre-transition and post-transition training phases (comparisons 1

and 2). In both cases, training resulted in a reduction in the

motor time constant as well as observation noise/signal ratios.

The training effect on motor time constant was more important than

the effect on observation noise. (That is, a substantially worse

match to the joint data sets is obtained by using an average motor

time constant than by matching with average observation noise

variances).

The transfer-of-training comparison (no. 3 above) showed

changes in observation noise/signal ratios to be the only

significant effect. Specifically, analysis of performance

immediately following transfer to the synchronous motion condition

revealed lower noise levels for the subjects initially trained with

8-msec delayed motion than for the subjects trained fixed base.

Thus, training with delayed motion (for this particular delay) was

more effective than fixed-base training in terms of training the

subject to efficiently process relevant perceptual information in

the simulated "operational" (i.e., synchronous motion) task.
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Training-related reductions in observation noise confirmed

pre-experimental expectations. Recall that the observation noise

process in the OCM accounts for most of the pilot "remnant" (i.e.,

the portion of the pilot's control activity that is not accounted

for by a time-invariant linear response strategy. Now, there are a

number of potential sources of remnant in any control situation,

including: (1) within-trial fluctuations in the response strategy,

(2) nonlinear response behavior, (3) a general

signal-to-noise-ratio limitation with respect to human information

processing, and (4) perceptual resolution limitations. The first

two sources should be especially influenced by training. One would

expect a subject unfamiliar with the experimental tracking task to

attempt different control behaviors early in training in his search

for the optimal response strategy. Similarly, a certain amount of

training would be required for a naive subject to learn to respond

in a linear fashion. Thus, reductions in observation noise with

continued training can be readily explained.

The transfer-of-training differences found for observation

noise are also expected. One might reasonably postulate that

subjects trained initially with the 80-msec delayed motion cues

were exposed to a perceptual situation more like the transfer task

than were subjects trained fixed base, and were therefore able to

more quickly learn to process faithful motion cues and adopt the

appropriate control strategy in the transfer condition.

-22-
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The observation noise results do show one unexpected trend,

however, in that observation noise reduction occurs mainly with

regard to utilization of tracking error, rather than error rate.

Now, one would expect that naive trackers would initially rely on

position information and, only after a period of training, would

they learn to effectively utilize rate information. These res-Ilts

indicate the opposite trend. While it is possible that our

preconceptions are wrong and that subjects more readily learn to

use rate than position information, a more believable explanation

is that the large observation noise identified for error perception

is a result of assuming a perfect internal for model analysis when,

in fact, the subjects have important deviations (or uncertainties)

associated with their internal models early in training. This

hypothesis remains to be tested.

The training-related change in motor time constant also

remains to be explained, especially since this model parameter

undergoes the most significant variation. One hypothesis is that

the relatively large motor time constant identified early in

training is, in fact, a manifestation of imperfections in the human

operator's internal mode of the task environment. This issue is

explored in the following section.
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2.5 Limitations on Psychomotor Performance

Subjects well-trained on relatively wide-band, single-variable

tracking tasks tend to reveal similar performance capabilities as

characterized by the pilot-related OCM parameters. We have seen

that when subjects are not fully trained, parameter values deviate

from nominal in the direction of degraded performance capabilities.

A similar degradation is found for well-trained subjects when the

system dynamics controlled by the subject are high-order (or low

bandwidtA).

In this section we explore certain hypotheses for these

systematic parameter variations, with emphasis on the notion that

deficiencies exist in the pilot's internal model of the task

environment. Two classes of manual control situations are

analyzed% (1) tasks in which subjects have been trained to

near-asymptotic levels of performance, and (2) tasks in which the

effects of training have been studied.

2.5.1 Effects of Task Environment on Asymptotic Performance

A small study was performed to explore the effects of task

parameters on pilot-related OCM parameters in single-variable

tracking tasks in which subjects had been trained to

near-asymptotic levels of performance. No new experiments were

performed; rather, existing manual control data were re-analyzed j
using the identification technique described in this report. if
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The control tasks analyzed ranged from simple proportional

control and rate control to control of relatively high-order

plants. Details of the experimental configurations and of the

results of this investigation are documented in Appendix E. The

following trends are revealed: (1) the motor time constant appears

to increase with the order of the plant, (2) large observation

noise/signal ratios are associated with perception of error

displacement for acceleration-control and higher-order plants, and

(3) a relatively large time delay is identified for the plants

configured by cascading rate control with low-bandwidth filters.

Now, since all subject populations were well trained, and

since different groups of subjects tend to perform the same on a

given task (given equivalent training), it is unlikely that these

differences in pilot-related model parameters reflect different

inherent information-processing capabilities among the experimental

subject populations. We are left with two more likely explanations

for the apparent trends: (1) subjects were motivated differently

by the different task configurations, and (2) internal modeling

difficulties associated with higher-order plants have been

reflected as differences in noise and response time parameters

because of modeling constraints.

The notion of task-related motivational differences are

explored in Appendix E. Sensitivity analysis performed with the
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OCM suggests that motivational factors might account, in part, for

the relatively large observation noise. The model indicates that,

in these tasks, the overall performance criterion (essentially,

mean-squared tracking error) is relatively insensitive to

observation noise covariance. To the extent that suppression of

self-generated noise increases task workload f8,9], the test

subjects may well have been unmotivated to reduce noise levels to

that found in tasks more sensitive to this parameter.

Motivational factors do not explain the task-realted changes

in motor time constant. Model analysis has not shown a consistent

relationship between the magnitude of the motor time constant and

the sensitivity of mean-squared error to reductions in this

parameter.

2.5.2 Effects of Training

In section 2.4 (and in greater detail in Appendix D) we showed

that, compared to asymptotic training, early training was

manifested as deviations in pilot-related parameter values

consistent with degraded performance capabilities. Plausible

explanations have been offered above for the differences in

observation noise levels. We now address the issue of

training-related changes in motor time constant--the parameter that

was most significantly influenced by training.

2
- 26 - I
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Four potential causes of training-related variations in motor

time constant are considered: (1) pilot response-bandwidth

capabilities increase with training, (2) the pilot becomes more

willing to generate larger control rates with training, (3) early

stages of learning are characterized by a large multiplicative

motor noise, (a way of treating uncertainties in the pilot's

internal model), and (4) apparent variation in the motor time

constant is an artifact of the modeling procedure and stems from

the assumption (for modeling purposes) of a perfect internal model

when, in fact, the subject's internal model is seriously deficient

early in training.

Experimental trends observed in the delayed-motion experiment

tend to refute the first two hypothesis. As shown in Appendix D,

the identified motor time constant for the static group immediately

decreased from 0.13 to about 0.087 upon exposure to combined (and

concurrent) visual and motion cues. It seems unlikely that an

inherent inability or reluctance to generate large rtes of change

of concrol would suddenly be modified.

The hypothesis of a progressive training-related decrease in

multiplicative motor noise is consistent with the observed decrease

in observation noise and would account, at least partially, for

training-related changes in motor time constant.
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This particular approach is reviewed below in section 2.6 and

in more detail in Appendix F. Additional research is needed to

determine whether or not this modeling approach can provide a

consistent explanation for the trends observed over the available

data base.

The multiplicative motor noise process may be considered as a

special type of internal modeling difficulty; namely, uncertainty

as to the effects of the pilot's control input. It seems obvious

that subjects would not have as accurate and precise an internal

model early in training as after considerable practice.

The training results presented in Section 2.4 are suggestive

of internal model discrepancies. Specifically, the experimental

data obtained early in training were not matched as well as data

obtained from the same subjects late in training, even though model

parameters were adjusted to provide the best match in both cases.

(See Figure 2.) This phenomenon would be expected if the structure

of the OCM as applied to the initial data sets was at least

partially in error (i.e., a perfect internal model assumed when, in

fact, the subject has a deviate internal model).

2.6 Multiplicative Motor Noise Model

In an attempt to account for the apparent task-related changes

in motor time constant, a small study was performed by Caglayan and

- 28 -



Report No. 4645 Bolt Beranek and Newman Inc.

Levison (131 to explore the utility of a multiplicative motor noise

model. The notion of a multiplicative motor noise process is

consistent with the empirical finding that, in idealized control

situations, both motor noise and observation noise appear to scale

with the variances of corresponding control and display variables.

In previous studies, these processes have been considered to affect

only the estimator (Kalman filter) portion of the model; in this

treatment, however, we considered the multiplicative motor noise

process to influence the control gains and, hence, the motor time

constant (which is the inverse of the feedback gain relating

commanded control rate to instantaneous control force).

Initial application of this submodel has been encouraging:

for the few experimental cases explored, variations in motor time

constant were accounted for by fixed values assigned to the cost of

control rate and to the parameters of the multiplicative motor

noise process. Further work is required to determine the extent to

which a fixed set of cost and noise parameters can explain human

operator behavior across a variety of task conditions. In

addition, for this concept to be useful in a predictive model,

consistent adjustment rules would be required to relate

multiplicative motor noise to perceptual cueing and, as we shall

shortly demonstrate, to the nature and amount of training on the

control task.
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Multiplicative motor noise may be considered one aspect of an

internal modeling deficiency on the part of the human operator. As

shown by Ku and Athens (14], one may consider the more general case

of multiplicative disturbances on the operator's internal model of

system dynamics. In effect, the multiplicative noise concept is a

representation of the operator's uncertainty about system response

behavior. One might well expect that such uncertainty would be

reduced both by improving the information available to the pilot

(e.g., provide motion cues) as well as by continued training.

Further details may be found in the paper by Caglayan and

Levison, which is included in this report as in Appendix F.

2.7 Concluding Comments

We have shown how the structure of the tracking task and the

degree of training can influence model parameters that we relate to

the human operator's information-processing limitations. A number

of hypotheses have been considered to account for these effects,

and the most likely explanation appears to be that the accuracy

and/or precision of the operator's internal model is improved with

enhanced perceptual information and with continued training. The

notion that learning relates to internal model development is

consistent with existing theories of learning [15-181.
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Despite the focussing on potential imperfections in the

operator's internal model, the reader should not conclude that

current modelling philosophy (in which the OCM is formulated with a

perfect internal model) is necessarily inappropriate. This

philosophy has been found to yield accurate predictions of

pilot/vehicle performance in a variety of tasks, and it is

especially useful in the design of experiments, where one is

primarily interested in predicting performance trends with respect

to changes in the task environment.

A more accurate human operator model is required, however, to

account for the interactions between cue set, training, and

performance. Because results to date suggest that the operator's

internal model is influenced by both cue set and learning, a

subsequent study has been initiated to explore this aspect of the

pilot model (Air Force Contract No. F33615-81-C-0157). To guide

this effort, a brief literature review has been completed with

regard to adaptive-control and identification algorithms and is

presented in Appendix G of this report.
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3. PUBLICATIONS AND PRESENTATIONS

The following publications and presentations relate, in full

or in part, to work completed under this contract.

3.1 Written Publications

1. Levison, W.H., R.E. Lancraft and A.M. Junker, "Effects of

Simulator Delays on Performance and Learning in a Roll-Axis

Tracking Task", Proc. of the Fifteenth Annual Conference on

Manual Control, Wright State University, Dayton, OH, March

1979.

2. Lancraft, R.E. and D.L. Kleinman, "On the Identification of

Parameters in the Optimal Control Model", Proc. of the

Fifteenth Annual Conference on Manual Control, Wright State

University, Dayton, OH, March 1979.

3. Caglayan, A.K. and Levison, W.H., "The Effects of

Multiplicative Motor Noise on the Optimal Human Operator

Model Proc. of the Sixteenth Annual Conf. on Manual Control,

Cambridge, MA, May 1980.

4. Baron, S., and Levison, W.H., "The Optimal Control Model:

Status and Future Directions", Proc. 1980 Int. Conf. on

Cybernetics and Society, Cambridge, MA, Oct. 8-10, 1980.
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5. Levison, W.H., and G.L. Zacharias, "An Optimal-Control Model

for the Joint Use of Visual and Motion Cues in Continuous

Tracking Experiments: Theory and Experiments", J. Cybernetics

and Information Science, Vol. 3, No. 1-4, 1980.

6. Levison, W.H., "A Quasi-Newton Procedure for Identifying

Pilot-Related Parameters of the Optimal Control Model", Proc.

of the Seventeenth Annual Conf. on Manual Control, Los Angeles,

CA, June 1981.

3.2 Oral Presentations

Oral presentations were given at the conferences cited above.

The following additional oral presentations were given relevant to

work performed during this study:

1. W.H. Levison: "A Model for the piloTGS Use of Motion Cues in

Roll-Axis Tracking Tasks", presented at the Review of Air Force

Sponsored Basic Research in Visual Processes and Human Operator

Control, Sinclair Community College, Dayton, OH, September

26-28, 1978.

2. W.H. Levison: "Effects of Delayed Motion Cues on Performance

and Learning in a Roll-Axis Tracking Task", presented at the

Review of Air Force Sponsored Research in Flight and Technical

Training, ASAF Academy, Colorado Springs, CO, March 27-29,

1979.
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3. Levison, W.H., "Measurement and Modelling of Skill Development

in a Continuous Tracking Task", 1980 APA Convention, Montreal,

Sept. 1-5, 1980.
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APPENDIX A

DESIGN OF AN EXPERIMENT TO EXPLORE THE PILOT'S USE OF

COMBINED MULTI-AXIS VISUAL AND MOTION CUES

The results of recent studies of motion-cue utilization

have been consistent with the hypothesis that attention must be

shared between visual and motion cues in the same axis of control;

that is, the pilot's ability to perceive and use cues from one

modality is degraded by the requirement to use cues from the other

modality [1-3]. The data are not sufficient, however, to

determine conclusively whether or not such interference effects

need to be considered when modeling closed-loop pilot/vehicle

systems.

As part of this contractual effort, a set of experiments

was designed to test various hypothesis regarding interference

(or lack thereof) among whole-body motion cues and visual cues,

both within a single axis of control and between two uncoupled

control tasks. Experimental conditions were selected to provide

a task environment for which performance would be sensitive to

attention-sharing limitations. The experiment design was based,

in part, on the then-existing response capabilities of the

Multi-Axis Tracking Simulator (MATS) facility at AMRL.
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A.1 Dascription of the Tracking Task

Analysis was performed for the general task of attitude

control consisting of either (1) roll control only, (2) pitch

control only, or (3) combined pitch and roll control. The task

consisted of either regulating attitude in the presence of

simulated gusts, or following a simulated target in attitude.

Simultaneous gust-regulation and target-following was not explored.

Vehicle transfer functions relating plant output P to control

input U were functions of the axis of control and of the nature of

the input (target or gust disturbance) as shown in Figure Al.

V(s), the experimental variable, represents the transfer func-

tion between commanded attitude rate and unit control input.

The first-order lag at 15 rad/sec is a close approximation to

the identified dynamics of the rotating simulator in both pitch

and roll, and the Pade network having a critical frequency of

33.3 rad/sec is an approximation to the 60 msec cumulative time

delay anticipated from filtering, digital update, and display

operations.

Roll-axis dynamics used in pr -rious experiments [2,4] were

used to provide a tie to published results; these dynamics are in-

tended to be representative of roll-axis response of high-perfor-

mance fighter aircraft. Pitch response characteristics were

selected to represent high-speed, high-altitude response for the

disturbance-regulation task [5]. In addition, pitch dynamics

containing a 5-sec divergence time constant were explored as a

means for providing a task for which performance is highly sen-

sitive to the nature of multi-cue interference.

A-2

I



BBN Report No. 4645 Bolt Beranek and Newman Inc.

General form:

P . 15 . 1 . -s + 33.3

(s)=K V(s) s+15 s s + 33.3

5 Roll,
V(S) s + 5 All Tasks

2S(4.3) s + 1.4 Pitch,

1.4 s + 2(.5)(4.3)s + (4.3)2 Target Input

(3.11) s + 0.804 Pitch (stable)

.804 s2 + 2(.348)(3.11)s + (3.11)2 Disturbance Input

- 0.2 Pitch (unstable),

s - 0.2 Disturbance Input

Figure Al. Controlled Element Dynamics
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The input forcing function was either a first- or second-

order Butterworth noise process having a break frequency at

either 0.5 or 1.0 rad/sec. Table Al shows the input parameters

assigned to the various tracking tasks considered in this analy-

sis. These parameters were chosen to provide tracking tasks

such that vehicle attitude and its first and second derivatives

would not exceed the limits shown in Table A2. The disturbance

input was added in parallel with the pilot's control input u(t);

the target input was added to the plant output p(t).

A. 2 Perceptual Submodel

We review here the perceptual submodel of the optimal-control

model for pilot/vehicle systems. The reader is assumed to have

a working knowledge of the basic model; a review of the optimal-

control model and its application to studies of motion-cue uti-

lization is provided in Levison, Baron, and Junker (1].

Past studies indicate that, in general, the pilot may be

assumed to obtain displacement and rate information from symbolic

visual display elements [6-8]. For situations in which the

frequency content of platform motion is within the passband of

the pilot's vestibular sensing mechanism, good model predictions

can be obtained by adopting a simple informatiumal model; that

is, one may assume that platform motion provides displacement,

rate, and acceleration cues.

Table A3 lists the perceptual variables assumed to be avail-

able to the pilot for the various tasks explored in this analysis.

Cues provided by motion cues in the target-following task are

different from those provided by visual cues; the former relate
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TABLE Al

INPUT PARAMETERS

Axis Input Order (rad/sec)

ROLL Target 2 0.5

Disturbance 2 1.0

PITCH Target 2 0.5

Disturbance 1 0.5

TABLE A2

SIMULATOR LIMITATIONS

Variable Roll Pitch

Displacement (deg)* 30 30

Rate (deg/sec)** 60 30

Acceleration (deg/sec2)** 100 100

* Desired Maximum

** Hardware Constraint
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solely to the position and motion of the simulated vehicle,

whereas the latter relate to the difference between vehicle and

target motion. In the case of disturbance regulation -- where
attitude error is simply the vehicle attitude -- motion and

visual cues overlap, with visual cues providing better displace-

ment information, and motion cues providing the acceleration

information missing from the visual cues. Both visual and rmotion

cues are assumed to be good sources of rate information.

TABLE A3

ASSUMED PERCEPTUAL VARIABLES

S o Tracking TaskSensory
Mode Target Tracking Disturbance Regulation

Attitude Error Attitude
Static

Attitude Error Rate Attitude Rate

Attitude Attitude
Motion Attitude Rate Attitude Rate

Attitude Acceleration Attitude Acceleration

The effects of perceptual interference are reflected in the

optimal-control model as adjustments to the "observation noise"

associated with perceptual inputs. If we assume negligible

threshold- and saturation-related phenomena, we represent observa-

tion noise as

P
S02 (O)Vyi yi i

1
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where Vyi is the covariance of the white noise process associated

with perception of the variable yi,' 2yi is the variance of Yj

(we assume a zero-mean steady-state tracking task), Po is the

noise/signal ratio generally found for single-variable tracking

tasks, and f. is the attention allcrated to the variable yi.

This model of task interference, or attention-sharing, is based

on research performed with visual cues only [8,9) as well as

combined visual and motion cues [1-5].

Values of approximately -20 dB for noise/signal ratio have

been identified from tracking data obtained in a variety of single-

variable manual control situations [2,6-8]. Accordingly, we

have associated this value with a relative attention of unity for

the analysis performed as part of this experimental design.

Because lower values have been found for some tasks [8,10), we

cannot consider -20 dB to literally represent "full attention";

rather, it serves as a convenient ancnor point that we can

associate with performance of a well-motivated and well-trained

subject on a task of moderate demand.

Good model results have been obtained with the assumption

that there is no interference among cues obtained from the same

physical display indicator (either a symbolic visual display or

platform motion). Therefore, we have assumed that a value fv

may be assigned to all visual perceptual variables in a given

task situation, and that an attention of fm may be assigned to

all motion-derived perceptual variables.

Previous results with multi-axis tracking tasks indicate that

task interference may be modeled as attention-sharing between the

perceptual variables associated with the various axes of control

[8,91. For static (fixed-base) tracking, the following model is

assumed:
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f = 1 single-axis
v

(2)
f + fv = 1 combined pitch and roll

where the subscripts e and 0 refer to the pitch and roll axes,

respectively. All attentional quantities are constrained to lie

between 0 and 1.
Various assumptions are postulated regarding attention-

sharing effects among motion cues in combined visual and motion

tracking. The assumptions considered in this analysis, and

their representation in terms of the model of Equation (1), are

outlined below.

Interference Between Visual and Motion Cues. In this least

optimistic assumption of attention-sharing requirements, we

assumed that the pilot has to share attention not only between

pitch and roll tasks, but also between visual and motion cues
within a task. This assumption is modeled as

f + f=
v m =fT (3)

where fT is the attention to the task (pitch or roll). The fT

are assumed to sum to unity across the two tasks.

Parallel Processing of Visual and Motion Cues. Attention-sharing

requirements across tasks are assumed the same for motion cues

as for visual cues, but multi-sensory cues are assumed to be
obtained in parallel (i.e., without interference) within an axis.

Thus,

fv fm = fT (4)
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No Attention-Sharing Decrements Associated with Motion Cues.

Motion cues are so compelling that the information provided by

platform motion is not degraded by the presence of other tasks.

In this case,

f =fv T

f =1 (5)
m

A.3 Model Analysis

Model analysis was performed to predict the effects of

motion cues and task loading on performance for various assump-

tions regarding attention sharing. Presence or absence of motion

was reflected by the set of perceptual variables included in the

model. effects of attention-sharina were accounted for

by variations in noise/signal characteristics as

described below. Other pilot-related model parameters were held

constant, or nearly so. Time delay was fixed at 0.2 seconds for

all model runs. The relative weighting on control rate was

adjusted to provide a "motor time constant" of 0.1 seconds, with

one exception: on the basis of recent results [4], a time

constant of 0.13 seconds was used for static roll-axis tracking.

Driving motor noise was negligible, and "internal" (or "pseudo")

motor noise was set at values consistent with past results (bet-

ween -50 and -40 dB, relative to control-rate variance). The
"pilot" was assumed to be attempting to minimize mean-squared

tracking error.

Predicted mean-squared error was obtained as a function of
"relative attention" (i.e., noise/signal ratio) for both static

and motion tracking to indicate the interaction that might be

A-9
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expected between motion cues and attention. For target-tracking

tasks, equal attentions were assigned to the variables shown in

the left column of Table A3. This treatment corresponds to the
assumption of parallel processing of visual and motion cues as

expressed in Equation (4). For disturbance tracking, equal

attentions were assigned to attitude and attitude rate for static

tracking and attitude, attitude rate, and attitude acceleration

to approximate the assumption of parallel processing.*

Predicted effects of motion and attention are shown in Figure

A2 for tarqet following and in Figure A3 for disturbance regu-

lation. All performance scores have been normalized with respect

to mean-squared tracking error predicted for static tracking with

a relative attention of unity (i.e., noise/signal ratio = -20 dB).

Figure A2 shows that motion cues should have a greater effect
on roll-axis performance than on pitch-axis error for the target-

following tasks considered in this analysis. For single-axis

tracking, motion-static differences in predicted MSE are about

35% for roll tracking and about only 10% for pitch tracking.
The latter difference is likely to be too small to show statis-

tical significance in an experiment using a relatively small sub-

ject population (say, 4-8 subjects).

Figure A2 shows little interaction between motion cue effects

and task loading. Static-motion differences are relatively con-

stant for various levels of attention to the task. (Because

scores are shown on a logarithmic scale, a given vertical dis-

tance indicates a constant fractional change in MSE score.)

* To more accurately reflect the assumption of parallel proces-
sing, attentions to variables assumed to be obtained from both
visual and motion sources should be doubled. This was done in
the analysis described later.
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Figure A2. Effects of Attention and m4otion on Relative Mean-
Squared Error: Target Following
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Figure A3 shows that predicted static-motion differences in

MSE are greater for the disturbance-regulation tasks. Predic-

tions for both the stable and unstable pitch tracking tasks are

shown in Figure A3b. Predicted single-axis differences are about

80% for roll, 35% for stable pitch, and 70% for unstable pitch.

Any of these changes is likely to be statistically significant

with a population size of 4-8 subjects.

A negative interaction between motion-cue effects and task

loading is predicted for disturbance regulation: the fractional

difference between static and motion MSE scores decreases as

attention to the task is decreased. This trend, predicted for

both roll and pitch tasks, is counter to that reported in the

literature [1i].

Figure A4 shows relative mean-squared error scores predicted

for the various attention-sharing hypotheses defined in Section

A.2. Scores relating to 2-axis tasks were obtained under the

assumption of 50% allocation to pitch and roll tasks. (By ad-

justment of the forcing functions and/or by appropriate weighting

of the individual MSE scores in the total "cost", the subjects

can be made to devote nearly equal attention to the two axes.)

Figure A4a indicates that the target-following task, wnile perhaps

being of operational interest, is not likely to provide a good

experimental test of the various attention-sharing hypotheses.

Motion cues are likely to have no statistically significant ef-

fect on tracking error for pitch tracking; roll tracking, while

more sensitive to the presence or absence of motion cues, is

also not expected to provide a sensitive test of all hypotheses

considered here.

A
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a) ROLL b) PITCH
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RELATIVE ATTENTION

Figure A3. Effects of Attention and motion on Relative
Mean-Squared Error: Disturbance Regulation
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Figure N4. Model Predictions for Various Attention-Sharing
Hypotheses
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Tasks involving disturbance regulation would appear to allow

a more sensitive test of attention-sharing hypotheses. Conside-

ring both single-axis and two-axis tasks, predicted differences

are sufficiently large so that tests of statistical significance

should allow one to select the best model. Although motion-cue

effects are greater for the unstable pitch tasks, static-motion

differences (at least for the more optimistic models) should be

statistically significant for the stable pitch task as well.

A.4 Recommended Experiment

It is recommended that an experiment be conducted using the

roll and stable pitch disturbance-regulation tasks described

above. These tasks should provide a suitable means for exploring

the interaction between motion cues, task load, and performance.

Furthermore, these experimental tasks can be related to fliqht
tasks of operational importance (e.g., air-to-ground attack in

turbulence with an airplane having good handling qualities.)

Forcing-function amplitudes and control forces and vehicle

motions are within desired limits. Guidance to selection of

these parameters can be obtained from Table A4, which shows pre-

dicted RMS scores for various system variables for all five tasks

considered in the foregoing analysis. For example, if the input

%inplitude is reduced by about a factor of 5 for pitch disturbance

regulation (column 4), the probabilities of exceeding the simulator

Limits on pitch and its derivatives (Table A2) should be acceptably

small; yet, signal amplitudes should be sufficiently large to

minimize percetudl threshold effects. Note that control gain

would have to be increased by about 5 to maintain required

control forces of reasonable levels.
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TABLE A4

PREDICTED RMS PERFORMANCE SCORES

Variable Target Input Disturbance Input

Roll Pitch Roll Pitch Pitch
(stable) (unstable)

o 10 10

G d  - - 15 10 10

K 15 10 15 10 10

a 2.47 1.90 - -
e

a4 6.12 5.90 - - -

a 10.6 10.3 4.47 9.34 .656

a. 7.19 7.15 10.7 27.1 1.54

a. 22.4 28.1 45.0 130. 6.18

Cu .587 .474 1.46 1.29 3.47

a. 3.05 2.16 6.24 7.91 23.0

Scores predicted for static tracking, observation noise/signal
ratio = -20 dB.

P = target, Pd = disturbance, u = control, e = tracking error,

p = plant.

A-16



BBN Report No. 4645 Bolt Beranek c iid rawman Inc.

Subjects should be instructed to minimize mean-squared

tracking error when tracking either pitch or roll singly. When

tracking combined pitch and roll, subjects should be instructed

to minimize a scalar cost that coasists of a weighted sum of

mean-squared pitch error and mean-squared roll error. Weightings

on the component scores should be selected so that performance

on each task would contribute equally to the total cost when

equal attention is paid to pitch and roll. Predicted perfor-

mance scores shown in Table A4 provides guidance with regard to

selecting weightings for component pitch and roll scores.

Subjects should be trained to near asymptotic performance

on the following six tasks: (1) pitch, static, (2) pitch, motion,

(3) roll, static, (4) roll, motion, (5) combined pitch and roll,

static, (6) combined pitch and roll, motion. Subjects should

be provided with knowledge of performance after each training

trial. In the case of two-axis trials, the subjects should be

told the total performance score plus the individual contributions

to that score of roll- and pitch-axis errors.
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APPENDIX B

MODIFICATIONS TO THE PILOT/VEHICLE MODEL

A modification of the existing implementation of the

optimal control model for pilot/vehicle systems was carried

out for this study. Specifically,

(i) the pilot's internal model of the vehicle was

allowed to differ from the true model.

(ii) The human was assumed to generate control-rate

corrupted by motor noise. The control signal

input was assumed to be estimated along with other
variables.

The base line optimal control model employed in this

study has been well documented in the literature [1-5]. To

make the discussion here brief, we shall only sketch the
necessary equations for the modified model used in this study.

The concept of wrong internal model is explained in detail

in 16]. The motivation for considering motor noise on control

rate input is explained in [7].

Let the system to be controlled by the human operator be

described by the linear equations

x(t) = Ax(t) + Bu(t) +Ew(t) (1)

x(t) = C x(t) + D u(t) (2)

where x is an nx-dimensional vector of system state variables,

u is an n u-dimensional vector of control inputs, X is an nY-

dimensional vector of displayed outputs and w is an nw-dimensio-

nal vector of a zero-mean, gaussian, white noise process with
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autocovariance

E{w(t1) w'(t 2)) = W 6(t1 - t 2 ) (3)

We shall assume that the parameter matrices A, B, C, D, E and

W are time-invariant and consider only the steady state response

of the system.

The structure of the human operator model is illustrated

in Figure Bi.

INFORMATION PROCESSING
my Y r Ofl

Figure1 3l- Structure of Human Operator Model

The structure and equations of Figure Bl have been documented

extensively (see, e.g., [4]). We summarize them briefly to aid

the subsequent development. Human limitations of perceptual

noise and inherent delays result in the "perceived" output yp (t)

being a noisy, delayed version of the displayed variables y(t),
i.e.*

* We assume zero thresholds on perception for convenience in
derivation. The computer program allows such thresholds to
be included.
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y = (t - T) + v (t - T) (4)

where T is a "lumped" delay and v (t) is a zero-mean, guassian,

white noise uncorrelated with w and with autocovariance

E{v,(t 1 ) V (t2)) = (t I - t 2 ). (5)

The human operator is assumed to "act" upon the information

y,(t) to generate the commanded control rate u (t) which resultsp -r
in the system input u(t) via the relation

u(t) = ur(t) + Vr(t) (6)

Here Vr (t) is a zero-mean, gaussian, white noise, uncorrelated

with vv and w, and with autocovariance-- y1

E{vr(t 1 ) V'r(t 2 )) = --rV 6(t - t2 (7)

Equations (6) and (7) may be appended to (1) - (3) to define
an augmented system with the following equations

Wl A,= B-=
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C1 = IC DI (8a)

and

2E1 (t)  =*A, (t) + Bi Rr(t) +  El K1(t)

Y(t) = L1 x(t) . (8b)

Equations (8) have the same form as (1) - (3) so the standard

results from modern control and estimation theory may be applied

directly to these equations.

The blocks in Fig.Bl labeled estimation and prediction

together model human information processing. For these processes

to be performed "optimally" it is necessary to have perfect

knowledge of the system {A, B, C, D, E), the driving noise-

statistics {W}, and the parameters describing human limitations

{T, IN' V, Vm). The control gains, L*, model human control-

command generation or compensation and are selected so as to

minimize a quadratic cost functional of the form

T

J(u) = lir E{d I ( q x. (t) + q Yi (t) + q u. 2(t)
T Oi X. i Y. 1 U. 1T1 cc  0 i 1

+ q2  2 (t))dt). (9)
ri  i

To compute L*, it is necessary to know {A, B} and the weighting

coefficients (q(.)i) in Equation (9). Thus, there are three

classes of quantities or parameters that are required to be

B-4



BBN Report NO. 4643 Bolt Beranek and Newman Inc.

known by the human operator if he is to perform optimally.
These are:

System: {A, B, C, D, E, W) (10a)

Human: {t, T, Vy, V1 (lOb)

Cost: " g ' q , IF . (10c)
x, i ui .

There are many assumptions that can be made concerning the
human operator's knowledge of the requisite information in

Equation (10). We assume the human operator knows the cost
functional weightings (Equation 10c) and his own limitations of
delay, neuromotor-lag and observation noise. On the other hand,
we allow the human's internal models of system matrices and driving

noise covariances to differ from the actual system, even as to
dimensionality. The rationale for these assumptions is the same

as that in [6].

To implement the above assumptions, .'e assume thc human
operator's internal model of (8) to be

z(t) = C1 z(t) (12)

,{Hl(t. -1 (t)} = 6 ,5(t1 - t2) (13)

where

A _ ,--=B- [ S -1 1o
0 0 1
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= (C, W - (14)
0 v

-m

The perceived variables are (still)

xp(t) = C1 x1 (t - T) + V y(t - T)

inasmuch as the "true" y is displayed to the operator. The

"internal state" z need not have the same dimension as xI. How-

ever, we assume that y and u in the internal model have the same

dimensions as the corresponding vectors of the system.

It is now assumed that the human will perform "optimally"

subject to his information concerning the system. In other words,

the estimation, prediction and control processes will be chosen

to be optimal for the internal system model of Equations (11) -

(14). Thus, the minimum variance estimate of the delayed inter-AA

nal state,z(t - r) k p(t), is generated by the Kalman filter

p(t) = A1 p(t) + B1 -r (t - T) + K [yp(t)] - C1 p(t)] (-)

where,

K= C' V (16)

and

- -' -I - - - -' - -lc,1 Z - •
+ A, +El HlI, E -C'- V6 C 0. (17)
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The "least mean-squared" prediction process is

-A 1
Z(t) = A, z(t) + B1 Ur(t) + e K[y(t) - C1 p(t)]. (18)

The commanded control rate is given by

u (t) = -L z(t) (19)-r -- -

where L is chosen to minimize (9)* subject to

.E = a, E + B l~r

Combining Equation (8) with (15), (18) and (19) yields for

the closed-loop system

-1 (t) A1 xl (t) - B L z(t) + E w1 (t)

z(t) = (A, - El L) z(t) + e [C1 x l(t - C) - C1 p(t) + v (t - T)]

E(t) = a, p(t) - B, L1(t - )+ K[Cl x1l(t -T)- Clp(t) + V (t - T)J.

(20)

These equations are delay-differential equations and are

infinite-dimensional for general A.
* Trmsinolvng2 2ar

Terms involving x, u. in (9) are replaced by appropriate terms
in z2 . The weighting coefficient qri will be chosen to result
in c~ntrol gains corresponding to ui to be approximately 10 so
that the "neuro-muscular time constants" are about 0.1.
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The delay-differential character of Equation (20) can be

estimated by approximating L z(t - t) = Ur (t - -) via a Padd

approximation for purposes of computing system scores (xT, U-7,

etc.) only. This approach results in a finite dimensional prob-

lem but the equations for 1, z and p remain coupled and of un-

desirable high dimensionality. An approach that reduces the

computational load significantly is to introduce the Pad4 appro-

ximation in the problem formulation directly. Thus, we modify

the structure of Figure Bl to that of Figure B2. Note that we

introduce the Pad4 delay at the human output, which usually has

a lower dimension than his input y(t).

+ Estition GisDelay
L 1 Approximato

Figure B2. Modified Model Structure

In practice, the delay is now considered part of the system

dynamics (except for computation of describing functions). It

is a part that is assumed known to the human operator; so there
will be some compensation for the delay. In particular, Equations

(1) and (2) are augmented to account for the delay prior to any
augmentation for control rate.

Let x represent the n -Pad6 states in an n -th order-P pP
approximation*

* The computer program allows n = 1 or 2.
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x = A x + b m (22)-p -p -p -p-

x = C x + d m (23)-r -p -P -p-

Equations (1), (2), (6), (22), and (23) are combined and the

following state space representation is obtained:

r1A 0 B]0
xx-,A2 0 Ap 0 B-1-

a2l '.!p t2l[ AP21 -

a -p 6.

E 21 0 0 0 w 21 - , C 21 C 0 ]

x 21 =A21 2S21 +21 + E21 -21

Y =21 x21 (24)

With the above approximation there is no true-delay, z (t) =P(t)

and Equations (20) reduce to

-21 -t21 x21(t) - -21 L z(t) I E21 w2 1 (t)

z(t) - (A21 - E21 L) Z(t) + K_[C 2 1 x21 (t)- £21 S(t) + v_(t)J (25)

This equation can be written in the form
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T = F T + G-.w

by defining

x 21(t) [2l 2 LT( It) -_ I -_ --< ]

E2 0 twl
G = [ - and _= I .

0 K v

Thus, if T = Coy T then T is the solution of

T = F T + T F' + G n G' (28)

0V I]
If F is a stable matrix, T will reach a steady-state given by

the solution of the algebraic equation

F T + T F' = -G Q G' (29)

The condition that F be stable is not automatically guaranteed

as is the case when all matrices are known. Stability will de-

pend on the choice of A 21 and the resulting control gains.

Therefore, it is necessary to check the stability of F in each

case. When F is stable, performance in terms of the mean-squared

values of all system variables can be determined from the

solution of (29).
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APPENDIX C

IDENTIFICATION OF PILOT MODEL PARAMETERS

Numerous research programs in manual control -- including the

series of BBN studies sponsored by AFOSR [1-61 -- have involved

extensive analysis with the "optimal control model" (OCM) for the

human controller. Model analysis has typically required the

matching of model outputs to experimental data in order to identify

(quantify) "pilot parameters"; i.e., independent model parameters

related to human information processing limitations and

capabilities. Pilot parameters identified from laboratory tracking

data usually include time delay, motor time constant, motor noise

covariance, and an observation noise covariance associated with

each perceptual input variable used by the controller [1].

Until recently, such parameters have been identified by

"manual search" procedures in which the analyst attempts to obtain

a good model match through trial-and-error adjustment of pilot

parameters (i]. While appropriate for testing certain theories of

operator response behavior (e.g., that good model predictions can

be obtained with a fixed set of pilot parameters), the manual

search technique suffers from a number of limitations:

1. The procedure is inefficient if more than 2 or 3 parameters

are to be identified.

2. There is usually no formalized "stopping criterion"; i.e.,

a rule for determining when the best match to the data has

been obtained.

3. No confidence limits are obtained to indicate the

reliability of the parameter estimates. Without some form

of reliability measure, one cannot determine the

significance of changes in parameter values across

experimental conditions.
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Two classes of automated search procedures have been explored

for identifying OCM parameters: (1) a "maximum likelihood" method
that operates on individual time histories, and (2) gradient search

schemes that operate on a combination of time-domain and
frequency-response statistics computed from single or multiple

experimental trials. In general, the maximum likelihood method

yields reliability estimates for each identified parameter [71;

attempts to apply this method to identification of OCM parameters,

however, have been unsuccessful in identifying the full set of

pilot parameters itemized above [8).

Lancraft and Kleinman (91 tested the following gradient search

schemes: (a) Powell's method for general non-linear functions

[101, (b) Powell's sum-of-squares method [111, and (c) a

quasi-Newton (QN) search scheme. Identification of the pilot

parameter set defined above was possible with each scheme, but
because of the lack of reliability metrics, no confidence limits

could be associated with the identified parameters.

Preliminary testing of the three search schemes indicated that

the QN scheme would be more efficient (converge in fewer

operations) than the other methods. Partly for this reason, and

because of the potential to derive reliability metrics by analytic

means, the QN scheme was studied further in this program phase.

Emphasis was on improving computational efficiency and in

developing methods of associating reliability estimates with

identified parameters.

The following topics are covered in the remainder of this

section: (1) review of mathematical concepts underlying the QN

identification scheme; (2) tailoring of the method to analysis of

manual control data; (3) methods for obtaining reliability

estimates; and (4) a method for obtaining a single best model

match to multiple data sets.
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C.A Mathematics of the Quasi-Newton Identification Procedure

C.1.1 Minimization Scheme

The QN scheme is generally implemented to minimize the

following scalar modeling error:
J = e w2 i  (i)

where ei is the difference between the ith measured data point and
the corresponding model prediction, and wi is a weighting

coefficient. This expression may be written as the following

matrix operation:

J = e'w e (2)

where

e=col[e il]
W=Diag[wi

Now, for a specific choice of model parameters p, one obtains

Jl= l! H (3)

For a new set of parameters P2=P+AP, one obtains a new modeling

error

J = (ei + e ' ) W ( e l + Ae ) = e' W'e1 + Ae'We1 + 2. W Ae + A e' W Ae

Noting that the first term is the original Jl and that the second

and third terms (being scalars) are equal, we obtain

J = Jl + 2 e 1 W Ae + Ae' W e (4)

Let us assume that model predictions vary linearly with model

parameters. Since the measured data points are constant,

prediction errors will also vary linearly with model parameters.

Thus,

Ae= Q' (5)
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where De.
q(i,j) = _i

The modeling error J2 may now be expressed as

1 + 2 e'1 WQ A- + k' QWQ (6)

Let the minimum modeling error be defined as Jo , and let the
parameter set that yields this minimum error be defined as the
"optimal" parameter set.* The derivative of J with respect to
perturbations in parameter values about the optimal set must be

zero; otherwise, some other parameter set could be obtained to

yield a lower modeling error. Therefore,

a= 0 = 2Qwe + 2QWQ'_LE (7)

Thus, the following change in parameter values yields minimum

modeling error, given the initial vector error e1 and the

assumption of linearity:

A = -[QWQ '] QWe1  (8)

C.1.2 Sensitivity Analysis

In addition to obtaining the best match to a given set of

data, one may also wish to determine some measure of the

reliability of the identified parameter values. Ideally, one would

like to associate a probability distribution with each of the

identified values so that various tests of statistical significance

could be performed. In order to determine such a probability

distribution, one would have to know the probability distribution

of the vector modeling. error e, and the functional relationship

between modeling error and model parameters.

* In general, when dealing with real exper tal data -- as
opposed to Odata" generated by an analyticR mr . -- one does not
obtain perfect correspondence between "'al -elictions and
experimental measurements. The matching -ror, then, is not driven
to zero but to some (presumably small) nonzero value.

C-4



Report No. 4645 Bolt Beranek and Newman Inc.

A qualitative indication of parameter estimation reliability

can often be obtained through sensitivity analysis relating changes
in the scalar matching error to perturbations in model parameters.

In general, estimates of parameters that have a high impact on
modeling error can be considered more reliable than estimates of

parameters having a smaller impact.

If model predictions are linear in the parameters, as assumed
in the foregoing treatment, we may analytically derive the

sensitivity of the scalar modeling error to perturbations in model

parameters about the optimal (best-matching) set. One may compute

the sensitivity to a given parameter with the remaining model

parameters held fixed, or with remaining parameters reoptimized.
The latter measure provides a more accurate reliability measure

because it accounts for the potential tradeoffs that may exist

among parameters in terms of matching the data.

We first compute the tradeoff among parameters. Assume that a

specific parameter pi has been set to a non-optimal value and that

the remaining parameters are re-optimized to provide a least-square

match to the data.

Equation (8) may be written as

A4 - -[QWQ']-l QW(eo+Ae) (9)

where eo is the vector corresponding to minimum matching error,_.e

is the incremental error arising from a non-optimal choice of model

parameters, andp is the change in model parameters that would
minimize the function value.

Now,42 must be zero for e-eo; otherwise, further reduction in

the modeling error would be possible. The above relationship may

therefore be written as

S-I QWQ, -l QW.Me (10)
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Let us assume that the incremental error arises from a

non-optimal choice of w single parameter pi. With the remaining

parameters (temporarily) fixed at their optimal values, the

resulting incremental error is

Ae P (11)

where
qi = col(qi' 5 i'2'.

Define the subscript "r" to indicate vectors and matrices that

remain when rows and columns corresponding to the i th model

parameter are removed. The expressions of Eqs(10) and (11) may be

combined to yield the following rule for re-optimizing model

parameters, given that the ith parameter is held fixed:

= -[ rrr'i A Pi (12)

Comparison of the elements of the vector Ar with pi reveals the

joint tradeoff between pi and the remaining model parameters.

To compute the effect on the modeling error J of a change in

pi, with remaining parameters re-optimized, we construct a new
vectorAp which is the composite of pi and Pr This vector is

defined as

=k v Ap. (13)
th

where v is a column vector that has a value of unity for the i

element and values for remaining elements as determined from

Eq(12).

From Eqs (6) and (13) we obtain

J=J0 + 2eoWQ'V Api + v ' QWQ v (Api) 2  (14)

We show by the following argument that the second term of the

above expression is zero. Recall that the * computed by Eq(8)

must be zero when e-e since, by definition, e corresponds to the
-I

optimal parameter set. Since the expression [QWQ] is nonzero,

the term QWe must be zero in order for A to be zero.
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The expression of Eq(14) may then be written as

A = J-Jo = v'QWTI(Api)2  (15)

where J is the incremental function value arising from the

deviation of parameter pi from its optimal value. The change in

function value, therefore, varies as the square of the change in

the parameter value.

C.2 Application to Manual Control Studies

Application of the QN method for analysis of human operator

performance in continuous control tasks has been reported by

Lancraft and Kleinman [9]. Described below is a revised

implementation that was used to perform the model analysis

described elsewhere in this report.

C.2.1 The Parameter Set

All model analysis discussed in this report required

identification of the following independent "pilot-related" model

parameters:

1. time delay;

2. relative "cost weighting" on control rate, where the human

operator was assumed to minimize a weighted sum of

mean-squared tracking error and mean-squared control rate;

3. observation noise covariance: one such parameter for each

perceptual variable assumed to be utilized by the pilot

(tracking error, error rate, etc.); and

4. pseudo-motor noise covariance.

Readers not familiar with the optimal control model and its

parameterization are referred to Levison et al [l] and related

references cited therein.

For a fixed task structure, a one-to-one correspondence exists

between the relative cost of control rate and the optimal control
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gains. One such gain represents a feedback path from control force

(or displacement) to desired rate-of-change of control; the inverse

of this gain is termed the "motor time constant". Because of the

near invariance of the motor time constant across a variety of

laboratory tracking tasks, values of control-rate cost weighting

are converted to the equivalent motor time constant for

presentation. Similarly, to facilitate comparison with previous

data, both observation and motor noise variances are normalized

with respect to corresponding signal variances and presented as

noise/signal ratios.

C.2.2 Matching and Convergence Criteria

Two criteria must be defined in order to apply the ON

identification procedure: (1) a definition of a scalar modeling

error to be minimized by the QN scheme, and (2) convergence

criteria to determine when the minimum modeling error has been

approached sufficiently closely to justify termination of the

minimization procedure.

Modeling error is similar to that used by Lancraft and

Kleinman: 1 N(i ^ 2 1N 2  2
1 ( G i-G i  1

=l Gi +i
il i=1 P~ i(16)

N R 2ii 11 N3 ,Ri Ri I i

where: i 1 R. S.

N. - number of valid measurements in the jth measurement) mesureentgroup.

Gi - magnitude (gain) of the ith describing function point to be

matched, dB.

Pi phase shift of the it h describing function point to be

matched, degrees.
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R. = "remnant" (control power not correlated with the tracking
thinput) of the i frequency point to be matched, degrees.

Si = ith variance score to be matched (units different for

different tracking variables).

: indicates standard deviation of experimental data point.
"^W : "hat" indicates model prediction.

Inclusion of the experimental standard deviations in the

scalar modeling error allows each error component to be weighted

inversely by the reliability of the data. To prevent the matching

criterion from giving excessive weights to variables that have very

low experimental variability (typically, run-to-run measurements

from the same subject), the following minimum standard deviations

are imposed: 0.5 dB for magnitude and remnant, 3 degrees for

phase, and 5% for the ensemble mean for variance scores.

Inverse weighting by standard deviation also converts each

error term into a dimensionless number, thereby allowing

conglomeration of matching errors of unlike qualities.

Essentially, minimization of the modeling error defined in Eq(16)

is equivalent to minimizing the average number of standard

deviations of mismatch. A numerical score of J=4 reflects an

average modeling error of 1 standard deviation (i.e., an average

score of unity per measurement group).

The minimization procedure terminates when the following

conditions jointly obtain for two successive iterations: (1)

reduction of the matching error by less than 0.5%, and (2) chanqes

in all identified parameters by less than 2%. The first criterion

is based on the fact that the sensitivity of matching error to

small perturbations of model parameters is relatively low in the

vicinity of the minimum (a consequence of the quadratic matching

error). The second criterion prevents termination resulting from a

compensat j "overshoot"; i.e., a situation in which successive
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estimates of one or more parameters bound the optimal values in

such a way as to yield essentially the same modeling error.

C.2.3 Log-Linear Assumption

The QN scheme may be used when modeling error is linearly

related to a functional transformation of the parameters, provided

the inverse functional operation is unique. (That is, given a

numerical value for the function f(a), one can uniquely compute p)"

In this case, the identification scheme proceeds as described in

Section C.1, except that all operations are performed on the

functional transformation of the parameter set until convergence is

achieved; the inverse functional operation is then performed to

yield the identified parameter vector 2. As described below, the

identification scheme has been implemented to operate on the

logarithms of the model parameters.

Because of the logarithmic operations used in defining some of

the measurements included in the modeling error of Eq(16) --

specifically, describing function magnitude and remnant --

implementation of the QN method is consistent with the assumption I
that model outputs are linearly related to the logarithms (in dB)

of the model parameters. Thus, the elements of A2 are interpreted

as logarithmic increments, and the partial-derivative matrix Q is

redefined as: 3e Pd I

where PdBi = 10 logl0 (pi) and
3PdBi = 101-- lOgl0(e )  4.3418)ap " 1 (18)

Partial derivatives are computed numerically asP. e.
q3-) (19)q(i,j) =4.343 AP1 I
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where e e is the incremental error resulting from an increment (in

absolute units) ofApi = 0.05 pi. The 5% "step size" was chosen

after a study of alternatives.

Once the partial derivatives are computed, the computation

indicated by Eq(8) yields the following increment in parameter

space:

2dB = -[QWQ'- Owe (20)

The following operation then trarslates the dB change computed

above into an increment in problem units:

= Pi 1 * 10('PdB/1 0) (21)

where pi is the base value for pi used in obtaining the gradient

and p. Is the next best guess for this parameter.Pi2

Implementation of the log-linear assumption prevents any one

parameter value from changing sign from one iteration to the next.

Since all model parameters are theoretically non-negative, this

variation of the minimization scheme avoids assignment of

out-of-bounds values to model parameters.

Sensitivity analysis is performed analytically as indicated in

Eq(15), where the quantity?%pi is interpreted as a logarithmic

(i.e., dB) change.

C.2.4 Reduction of the Parameter Set

Numerical difficulties in performing the QN minimization

procedure may be encountered whenever the modeling error becomes

relatively insensitive to changes in one or more model parameters

(or linear combinations of parameters). In this case, the

expression QWQ' is ill-conditioned for inversion, and poor

estimates of model parameters may be obtained.

Numerical difficulties of this sort are minimized by removing

from the search procedure, at a given iteration, each model
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parameter that has a negligible effect on modeling error. The

following steps are 'performed at each iteration of the QN

minimization procedure:

1. The increment A is computed for the full parameter set

according to Eq(8), and the sensitivity measure of Eq(15) is

computed for each parameter.
2. *Non-influential" parameters are defined as those for which a

50 dB change is predicted analytically to increase the scalar
modeling error by less than 4 units (corresponding to an

average matching error of one standard deviation). (The 50 dB

criterion was selected on the basis of a parametric study that

showed this criterion to generally yield minimum matching

error.)

3. A newAp is computed for the reduced parameter set consisting

of only influential parameters.

4. The subsequent iteration of the QN procedure is initialized

with a set of parameter values for which (a) influential
parameters are incremented as determined in Step 3, and (b)

non-influential parameters remain unchanged.

Note that the entire parameter set is conside-ed at each

iteration. Thus, a parameter omitted from the computation ofA2 at

a given stage is not necessarily discarded from the remainder of

the identification process. A further restriction is placed on the
minimization procedure to reduce the chances of convergence to a

local minimum appreciably removed from the global minimum.
Specifically, an individual parameter is allowed to change by no

more than 10 dB (i.e., ten-fold increase or reduction) from one

iteration to the next.

C.2.5 Line Search

As noted previously, nonlinear relationships between model

parameters and model outputs will tend to impair the efficiency of
the QN scheme; in extreme cases, this method will not converge.
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Typically, if a suitable initial set of parameter values is

chosen, the direction of the vectorAp computed by Eq(8) has the

potential to reduce scalar modeling error, but the magnitude will

be non-optimal, sometimes leading to a larger modeling error.

A simple binary search procedure is used. First,A2 is

computed as described above, the parameter vector p is incremented

accordingly, and a new modeling error is computed. If the new

modeling error is lower than the initial error, the QN procedure

continues (or terminates, if the convergence criteria are

satisfied). On the other hand, if error increases, the originalAe

(in dB) is halved, another parameter vector p is computed with the

reduced increment, and modeling error is again tested. This

procedure is repeated until (1) matching error is reduced from one

iteration to the next, or (2) until four attempts fail to reduce

matching error, at which point the minimization scheme terminates.

C.2.6 Initialization

As is the case with any other search procedure, application of

the QN scheme requires a suitable initial set of values for the

model parameters; some rule or procedure is generally required to

allow proper initialization.

Fortunately, the independent parameters of the OCM -- the

parameters we term "pilot-related" and attempt to identify --

appear to be relatively independent of task parameters. For a

variety of laboratory tracking situations, one can achieve a

reasonable match to experimental data by using a fixed set of rules

for selecting pilot parameters. Accordingly, identification

results presented in this report were obtained with model

parameters initialized as shown in Table Cl.
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Table Cl

Initial Selection of Model Parameters

Symbol Parameter Adjustment Rule

TD Time Delay Set to 0.20 seconds

G Relative Cost Adjust to yield motor time
of Control Rate constant of 0.1 seconds

VUP Pseudo motor Adjust to yield noise/signal
noise covariance ratio, relative to control-rate

variance, of 10- 5 n(-50 dB)

C observation noise Adjust to yield noise/signal
covariance ratio, relative to the variance

of signal "x", of 0.01 iT(-20 dB)

(1) Scalar control assumed.
(2) Driving motor noise assumed to be zero.

C.3. Tests for Significance

In the following discussion we assume that the data base being

subjected to model analysis reflects a significant difference in

human operator response behavior, as determined by some standard

quantitative test for significance. The significance test to be

performed on identified model parameters is not, therefore, to

determine whether performance differences are due to "experimental

error" (that issue having been resolved by analysis of mean-squared

error scores and the like), but rather to test the (null)

hypothesis that the various data sets can be modeled by the same

set of model parameters.
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Three potential methods for determining the significance of
changes in identified parameters are exriored: (1) direct analysis

of model parameters, (2) determination of probability densities for

model parameters, and (3) a more qualitative cross-comparison

procedure.

C.3.1 Direct Analysis of Model Parameters

Perhaps the simplest method of testing for significance is to

treat the identified parameters as data and perform some standard

test for significance. A parametric test may be used if one has a

basis for assuming the form of the underlying probability

distribution of model parameters; otherwise, a non-parametric test

is appropriate.

This method for determining statistical significance has

certain drawbacks, however. Model analysis must be performed on a
number of data sets in order to provide the required statistical

base; one cannot simply compare average performance in Condition

"A" with average performance in Condition "B". Thus, computational

requirements are relatively high. Furthermore, a sufficient number

of replications may not be obtainable, as may be the case with data

obtained early in training where appreciable run-to-run learning

effects are observed.

An equally serious limitation is the possibility that this

test may declare "significant" a difference in parameter values

having little to do with actual differences in operator response

behavior. For example, suppose that the motor noise ratios

identified for Condition "A" tend to cluster around -40 dB, whereas

those identified for Condition "B" cluster around -60 dB. Suppose

further that modeling error in both conditions is insensitive to

values of motor noise in this range. Though "significant" in terms

of a statistical test, such a difference would not be meaningful

because of the inability to precisely identify the value for the
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motor noise parameter. A similar statistical "false alarm" can

arise if changes in one parameter compensate for changes in another

parameter in terms of overall modeling error.

C.3.2 Computation of Probability Densities

The limitations cited above can, in principle, be overcome by
an analytic procedure that allows one to compute the joint

probability density of the identified parameters. Effects of
insensitivity and "trade-off" among parameters are accounted for,

and one has the potential for analyzing parameters obtained from
average data or from a single experimental trail.

If the probability distributions of the model parameter

estimates are to be computed, there must be a known, consistent,
and mathematically tractable relationship between the vector

modeling error (equivalently, model predictions) and the parameters
to be identified. Computation is usually facilitated if this

relationship is linear.

In order to determine the feasibility of deriving probability

distributions for identified model parameters, the assumption of
linearity was tested empirically against data obtained in one of
the cases explored in the study of delayed motion cues [121. This

case was selected because of the large range in error/parameter

sensitivity across the various pilot parameters.

Rather than test the linearity of each element of the vector

error e, we tested the relationship of the scalar error J to
changes in individual parameter values (with remaining parameters

reoptimized). As shown previously in Eq(15), the scalar modeling
error should vary about its minimum value in proportion to the
square of the deviation of a given parameter about its optimum

value. Failure of this quadratic relationship to obtain would
indicate a nonlinear relationship between model parameters and

model outputs.
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Empirical sensitivity tests were performed as follows. First,

the following six OCM parameters were adjusted to provide the best

match to the data: three observation noises (position, rate, and

acceleration), pseudo motor noise, time delay, and control-rate

weighting. The analytic sensitivity computation defined in Eq(15)

was performed to predict the change (in dB) in each parameter--with

remaining parameters reoptimized--that would increase modeling

error by 4 units. Let us call this parameter increment A dBo .

Note that this quantity is related inversely to the sensitivity of

modeling error to parameter deviation.

An empirical sensitivity test was performed for four of the

six parameters whereby increments in modeling error about the

minimum were computed for parateter variations ofddB0 and~dB0 /2.

Very large values for AdB dictated the use of smaller test

increments for the remaining parameters. Modeling error increments

computed in this manner were compared to those predicted by the

analytic relationship of Eq(15).

Table C2 shows that the degree of correspondence between

computed and predicted error increment tended to vary directly with

the sensitivity of modeling error to parameter deviation.

Correspondence was greatest for time delay (AdBo = 1.0) and least

for pseudo motor noise and rate observation noise (LdB o = 88.7 and

154, respectively). Sensitivity was highly asymmetric for the

latter two parameters, showing virtually no effects for deviations

in one direction and large effects for deviations in the other.

These results should not be generalized to other data sets.

That is, one should not conclude that time delay will always be the

most tightly defined parameter, nor that rate observation noise

will be ill-defined. Experience with the ON identification scheme

reveals that the quantitative and qualitative relationship between

model parameters and outputs will vary with the particular

experiment.
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Table C2

Sensitivity of Modeling Error to Parameter Change

with Remaining Parameters Re-optimized

Parameter Modelinq Error Incr. Parameter 'Modeling Error Incr.:
Deviation Predicted Computed Deviation Predicted Computedi

a) VY dB =16.7 d) VUP AdBO =88.7
e

+16.7 4.0 6.3 +44 0.98 108.3

+8.35 1.0 2.6 6 +22 0.25 10.3

-8.35 1.0 10.6 -22 0.25 - 0.5

-16.7 4.0 52.5 -44 0.98 - 0.5

b) VYe AdB = 154 e) TD AdB = 1.0b)Ve 0 0

+40.0 0.27 -0.1 +1.0 4.0 4.7

+20.0 0.067 -0.1 +0.5 1.0 1.2

-20.0 0.067 37.2 -0.5 1.0 1.0

-40.0 0.27 78.5 -1.0 4.0 4.4

c) "" AdB o = 6.5 f) G AdB o =1.6

+6.5 4.0 6.6 +1.6 4.0 4.0

+3.25 1.0 2.7 +0.8 1.0 0.7

-3.25 1.0 3.6 -0.8 1.0 2.0

-6.5 4.0 15.2 -1.6 4.0 7.1

all entries in dB

AdB = theoretical change required to increase modeling error
by 4 units.

1
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The principal conclusions to be derived from the results of

this sensitivity test are that, (l) assumptions of linearity are

not valid for performing analytic operations on identified

parameters, and (2) the relationship between model parameters and

output differs qualitatively across model parameters. As a

consequence, computation of probability densities for pilot-related

model parameters does not seem feasible.

C.3.3 A Cross-Comparison Method

A cross-comparison test may be used to determine the

qualitative significance of differences in identified parameter

sets for two experimental conditions. This method employs a

numeric, non-analytic sensitivity test as described below.

Assume that model parameters have been identified from two

data sets corresponding to, say, the "baseline" and 'test"

experimental conditions; our task is now to test the null

hypothesis that a single set of model parameters provides a

near-optimal match to the baseline and test data. To perform this

test, we first identify the following three sets of pilot

parameters: (1) the set that best matches the baseline data, (2)

the set that best matches the test data, and (3) the set that

provides the best joint match to the baseline and test data. For

convenience, we shall refer to the parameters identified in step 3

as the "average parameter set".

We next compute the following four matching errors:

J(B,B) = matching error obtained from baseline data, using

parameters identified from baseline data (i.e., best

match to baseline data).

J(B,A) = matching error obtained from baseline data, using average

parameter set.

J(T,T) = best match to test data.

J(T,A) - matching error obtained from test data, using average

parameter set.
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Finally, we compute the following "matching error ratios":

MER(B) = J(B,A)/J(B,B), MER(T) - J(T,A)/J(T,T), and, if we wish to

reduce the results to a single number, the average of these two

error ratios.

In a qualitative sense, the greater the matching error ratios,

the more significant are the differences between the parameters

identified for the baseline and test conditions. For example, if

both matching error ratios are unity (the theoretical minimum),

then the null hypothesis is supported: there exists a single set

of parameters that provides an optimal match to both data sets.

Any differences between the baseline and test parameter sets must

be considered insignificant and can be attributed to imprecision of

the identification procedure. Conversely, if one or both matching

errors ratios are substantially greater than unity, one must reject

the null hypothesis and consider the differences in model

parameters to be "significant"; i.e., to represent true differences

in operator response behavior.

As shown below in Section C.4, a good approximation to the

joint match to multiple data sets can be obtained by simply

matching the average data. Thus, to obtain the "average parameter

set", one would first obtain a point-by-point ensemble average of

the (reduced) baseline and test data, and then identify parameters

to match the average data set. This procedure is valid if the same

task description applies to the two experimental conditions; i.e.,

if both tasks can be modeled identically except for quantitative

differences in pilot-related parameters. Experiments designed to

explore training effects, environmental stress, or interference

from other concurrent tasks often meet this restriction.
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This scheme may also be used to test a single parameter or a

subset of parameters. Suppose, for example, one wishes to test

apparent differences in the time delay parameter. The matching

errors J(B,B) and J(T,T) would be computed as described above. The

errors J(B,A) and J(T,A), however, would be computed with only the

time delay parameter fixed at its "average" value; remaining

parameters would be re-optimized.

The primary disadvantage of the cross-test method is that it

yields qualitative, rather than quantitative, results. For

example, one cannot state the probability of falsely rejecting the

null hypothesis, given a particular modeling error ratio. Rather,

if this ratio is greater than some threshold (which must be

selected on the basis of engineering judgment), the identified

parameter difference is considered "significant".

Despite its qualitative nature, the cross-comparison method

has a number of important advantages compared to the alternatives:

1. No restriction is imposed on the form of the relationships

between model parameters and model predictions.

2. If necessary, significance tests can be performed on the basis

of a single trial per experimental condition.

3. Identification of model parameters from averaged data avoids

the computational expense of matching individual experimental

trials.

4. Significance tests can be performed for the entire parameter

set as a whole, for individual parameters, or for groupings of

parameters.

Application of this methodology to the study of human operator

performance is illustrated in Appendix D.
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C.4 Joint Match to Multiple Data Sets

In this section we show that, under certain conditions, obtaining

the best joint match to multiple data sets is equivalent to

matching the average of the data sets. The major assumption we

must make is that the same linearized task description applies to

the various experimental conditions of interest. This assumption

holds for the training effects reported in Appendix D, where the

performance differences compared were due entirely to differences

in pilot response behavior.

Although all comparisons discussed in this report are were

between pairs of data sets, any number of data sets can

theoretically be considered. Assume that we wish to minimize the

following scalar modeling error:

J = . ~ 'W . (22)J = l -i-ie

where ei is the vector modeling error for the i data set, Wi is

the corresponding matrix of weighting coefficients, and N is the

number of data sets.

Assume that an initial guess at pilot parameters yields a

modeling error of value J, and that a second set of parameter

values yields the errorN J1 . The new error is given as

J = ~(e' +- Ae' ) W. (e. + lei)
1 ~ i -1 -1 -1 -

J + 2 b e! W e. + X~ e ! t (23)i~il -i -2 i~l -ei - -2i (23)

Now, if the same model applies to all data sets, we can write

_ e i = q' p for all "i" (24)

where Q is the matrix of partial derivatives defined in Section

C.l. Eq(23) may now be written as:

J =J + 2 'qj Ei + ~pQ~.Q~(25)
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Following the logic presented in Section C.1, we increment the

model parameters as follows:

A - IQ W Q'-lqXi e1  (26)

Let us further assume that the matrix of weighting

coefficients is the same for all data sets. In this case,

W.-N W,

and the above expression is written as
.(27)

Thus, for the assumptions made here, identification of the

parameter set that bes* matches multiple data sets is equivalent to

the parameter set that best matches the average data set.
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APPENDIX D

ANALYSIS OF CONTROL STRATEGY DEVELOPMENT

An experimental study was performed jointly by the Air Force's

Aerospace Medical Research Laboratory and the Human Resources
Laboratory to explore the effects of simulator delays on

performance during various stages of training. Analysis of the
experimental data was undertaken by BN under Contract No.

F33615-16-C-5001, and was continued under the subject AFOSR study,

to quantify and model the interaction between motion cue delay and
learning, including transfer between initial training with delayed

motion and subsequent training with synchronous visual and motion

cues.

Initial results of the BBN analytical study have been
presented by Levison et al (1]. We first briefly review the early

results, and we present additional results obtained through

application of the identification procedure described in Appendix

C.

D.1 Review of Experimental Study

The experimental task consisted of maintaining a simulated
fighter-like aircraft wings level in the presence of random

turbulence. Five groups of subjects naive with respect to this

task participated. One group trained initially with
instrument-like visual cues only (the "static" condition); another

group trained with combined, synchronized visual and motion cues

("synchronous motion"); and the remaining groups trained with
motion cues delayed with respect to visual cues by 80, 200, and 300

msec. All groups were trained to apparent asymptotic mean-squared

error performance in their initial tasks. After training, all but

the synchronous motion group trained to asymptotic performance in

the synchronous motion condition.

D-1



Report No. 4645 Bolt Beranek and Newman Inc.

Pre- and post-transition learning trends for the various

subject groups are shown in Figure Dl. Mean-squared error is

plotted as a function of training session, where each session

consisted of four experimental trials of approximately three

minutes each.

The training curves were ordered with respect to motion-cue

delay as one would expect; increasing mean-squared error was

associated with increasing delay. For the most part, static

performance scores lay between the scores associated with 200 msec

and 300 msec delays. All groups training initially with delayed

motion (or no motion) showed an immediate reduction in tracking

score when presented with synchronous visual and motion cues.

D.2 Effects of Training on Pilot Model Parameters

The identification procedure described in Appendix C was used

to quantify pilot-related model parameters for selected

experimental conditions. Qualitative tests of significance for

parameter differences were conducted using the "cross-comparison"

technique. The following training effects were analyzed: (1)

pre-transition learning, (2) post-transition learning, and (3)

effects of pre-transition training on response behavior immediately

following transition to synchronous motion.

D.2.1 Pre-Transition Learning

As shown in Figure Dl, initial (pre-transition) training was

accompanied by large reductions in mean-squared tracking error.

This improvement in overall man/machine system performance was

accompanied by substantial changes in the subjects' response
strategy.
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Effects of training on frequency response measures for one

subject are shown in Figure D2. During the course of training,

amplitude ratio increased at all response frequencies,

high-frequency phase lag was reduced, low-frequency remnant was

reduced, and high-frequency remnant was increased.*

Increased gain and reduced phase lag are generally indicative

of improved tracking efficiency. Remnant results appear ambiguous,

since both reductions and increases in response randomness are

seen. It should be noted, however, that the spectrum of the
pilot's response (both remnant and input-correlated) is a function

of the closed-loop system response properties as well as of

intrinsic *pilot noise". The remnant trends observed here are

consistent with the hypothesis that training leads to decreased

response variability and increased man/machine response bandwidth.
The following pilot-related model parameters were identified

for selected experimental conditions: (a) observation noise

variances for tracking error, error-rate, and (where motion cues

were available) error acceleration, (b) pseudo motor noise

variance, (c) time delay, and (d) relative cost weighting on

control rate. To facilitate comparison with previously published

results, noise variances were converted to equivalent noise/signal

ratios as described in Table Dl, and the control-rate cost

weighting was converted to a motor time constant.

"In all figures showing frequency response, 0 dB amplitude ratio
indicates 1 pound control force2 per degree roll angle, and 0 dB
control power indicates 1 pound control power per rad/sec.
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Definition of Pilot-Related Model Parameters

Parameter Units Definition

PY dB Observation noise/signal ratio associated
x with variable "x", computed by normalizing

observation noise variance with respect to
variance of "x".

PUP dB Pseudo motor noise/signal ratio, computed
by normalizing pseudo motor noise variance
with respect to control-rate variance.

TD sec Time deiay

TN sec Motor time constant, related directly to
cost of control-rate.

Changes in pilot parameters with initial (pre-transition)
training are shown in Table D2 for two test subjects in the static
group. Parameters are shown for an average of 2-4 trials very

early in training ("Early Pre") and for the average of the final
four pre-transition trials ("Late Pre"). The difference between

"Late" and "Early" represented about 70 training trials.

Both subjects exhibited a sizeable decrease in observation
noise on tracking error as well as a marked decrease in motor time
constant. Changes in rate observation noise were relatively small

and inconsistent. One subject showed a sizeable decrease in time
delay with training, whereas the other showed a large increase in

motor noise.

The cross-comparison qualitative test for significance
described in Appendix C was applied to model parameters
individually and in groups to determine which of the observed
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TABLE D2

EFFECTS OF TRAINING ON PILOT-RELATED MODEL PAP.AMETEPS

State of Subject Pilot Parameter
Training Group Subject PYe Pye I.PYeeI PUPI TD TNI

a. Effects of Pre-Transition Training

Early Pre Static CP -5.3 -18.6 -- -28.2 .230 .343
Late Pre -21.6 -16.4 -- -29.3 .162 .169

Early Pre Static TB -11.0 -15.9 -- -70.1 .198 .162
Late Pre -21.2 -17.4 -- -56.9 .219 .121

b. Effects of Post-Transition Training

Early Post Static Average 122.5 -18.0j:21.7 -50.2 .2651.36
Late Post 5 Subj -20.0 -21.8 1 -62.9 .256 1

c. Effects of Pre-Transition Training on Post-Transition Performance

Early Post~ Static fAverage 1-.22 5 -18.61 -21.71-50.2 1.265f.06
80-msec 5 Subj 35:8 -21.8 -27 .2 53.2 .228 0969
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parameter changes reflected real differences in operator behavior.

"Testing" a parameter, or group of parameters, consisted of
computing the modeling error with the parameter(s) fixed at the

value(s) determined from matching the average data set; remaining

parameters not being tested were readjusted in a quasi-Newton (ON)

search procedure to yield minimum modeling error. A "modeling

error ratio" was then computed for each of the two conditions being

compared by normalizing the modeling error computed in this test by
the corresponding minimum modeling error obtained in the QN search

over the entire parameter set. The two error ratios were then

averaged to yield a single metric relating to the importance of the

parameter difference(s) being investigated.

Tests were performed for the following sets of parameters:

(a) the entire set, (b) "response time parameters" (time delay and
motor time constant) as a group, (c) observation noise parameters

as a group, (d) motor time constant individually, and (e) time

delay individually. Modeling error ratios were computed separately

for subjects CP and TB.

Figure D3 shows that, taken as a whole, changes in

pilot-related model parameters during the course of training were

highly significant. Average model parameters yielded modeling

errors that were from about 8 to 20 times as great as those
obtained with the optimal parameter sets. This result is not

surprising, given the substantial training-related changes in

operator response behavior shown in Figure D2.

Training-related differences in both the response-time

parameter group and the noise parameter group were important.
Differences associated with response time were more significant in

the sense that error ratios for this grouping were about 50% higher

than ratios associated with the noise parameters.
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Separate investigations of the motor time constant and time

delay parameters reveals that the significance of response-time

differences may be attributed almost entirely to training-related

changes in motor time constant. Fixing the time delay by itself

yielded error ratios only slightly greater than unity. (A ratio of

unity indicates no effect.) Thus, the approximate 70-msec

reduction iin time delay found for subject CP appears to reflect a

relative insensitivity in the identification procedure (for these

particular data sets), rather than a true change in the subject's

information-processing capabilities.

An additional test (not shown in Figure D3) was performed to

determine the qualitative significance of the large

training-related increase in motor noise ratio found for subject

TB. Model parameters were adjusted to find the best match to the

early pre-transition performance data, with the restriction that

the pseudo motor noise ratio be fixed at the value identified for

late pre-transition performance. The modeling error computed in

this way was only about 2% greater than the error computed when the

motor noise parameter was optimized, indicating that the apparent

change in motor noise reflected an identifiability problem rather

than a training problem. This analysis allows us to draw some

limited conclusions with regard to the effects of training for

these two subjects. Specifically, the most important effect of

pre-transition training on pilot-related model parameters was to

decrease the motor time constant (equivalently, reduce the relative

cost penalty on control-rate activity). Reduction in observation

noise was a lesser but also important effect.
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D.2.2 Post-Transition Learning

Table D2b shows the effects of training on parameters

identified for the static subject group, following transition to
the synchronous-motion condition. Results are shown for data

averaged over the first four experimental trials obtained after

transition ("Early Post") and for the final four trials of the

post-transition training phase ("Late Post").

Training was accompanied by a reduction in the

noise/signal ratios, taken as a group, and by a reduction in

response-time parameters (primarily motor time constant). Results

of the cross-comparison significance test for parameter differences

are given in Table D3a. An average modeling error of 8.0 was
computed with all parameters fixed at their average values, which

suggest that the aggregate change in parameter values during the

course of post-transition training was significant.

Table D3

Modeling Error Ratios

Parameter Set Tested

I r Response All

State of Subject All Time Noises
Training Group

a. Post-Transition Training

Early vs. Static 8.0 2.5 1.3

b. Effect of Pre-Transition Training on Initial
Post-Transition Performance

Early Static vs 10.3 F0 21 ]
_______8 O-msec ___j
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It would appear that training had a more significant influence

on response-time parameters than on noise parameters. Fixing

response time parameters increased modeling error on the average bV
a factor of 2.5, whereas fixed noises gave a modeling error ratio

of only 1.3.

In conclusion, for the data base reviewed here, similar

learning trends were found for pre- and post-transition training.
Both phases showed progressive decreases in both response-time and

noise parameters, with changes in response-time parameters being of

apparently greater significance.

D.2.3 Effect of Pre-Transition Training

One indication of the effectiveness of a particular training

methodology is the nature of operator response behavior immediately

upon transition to the operational task, compared to asymptotic
performance in the operational task. If, for example, asymptotic

operator response strategy were revealed upon transition, we would

conclude that the training method was effective in developing the

required perceptual, information-processing, and motor-response

skills. Similarly, if two or more training methodologies were

compared, the one yielding post-transition performance closest to

asymptotic operational performance would be judged the most

effective.*

With regard to the delayed motion-cue experiment described

earlier, let us consider the task with synchronous visual and

motion cues as the "operational' task, and let us compare the

effectiveness of training fixed-base (i.e., static) to training
with platform motion delayed by 80 msec. Figure D1 shows that

training with minimally-delayed motion cues was substantially more
* Efficiency and cost-effectiveness of training methodologies are
also important considerations but are not germane to this
discussion.
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"effective": post-transition mean-squared tracking error was very

nearly at asymptotic levels and was less than half that observed

for static training.

- Frequency-response measures shown in Figure D4 show that

delayed-motion training allowed the subjects to operate with less

response variability (remnant) and with generally higher gain than

did fixed-base training. Model parameters shown in Table D2c are

consistent with these results and reveal lower observation-noise

ratios for training with platform motion. Changes in response-time

parameters were inconsistent.

Table D3b shows that parameter differences were significant in

the aggregate. When subgroups of parameters were tested, only the

noise parameters showed a potentially significant effect; modeling

error, on the average, was unaffected by fixing response-time

parameters at average values.

D.3 Discussion of Model Results

The foregoing analysis provides some indication of the effects

of training on operator response capabilities, and it also

demonstrates certain important aspects of the analytical

methodology itself. Implications as to response capabilities are

discussed in the main text and are not treated here.

Methodological factors are discussed below.

The model analysis summarized above demonstrates that a large

variation in a model parameter is not necessarily a significant

variation. In three separate examples, relatively large variations

in time delay, motor noise, and observation noise were found to

have little impact on the ability to match the experimental data.

In general, then, some form of sensitivity analysis is required to

determine which parameter changes are necessary to account for

differences in operator response behavior.
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The reader may have noticed from the modeling error ratios

shown in Figure D3 and Table D3 that effects are not additive. For

example, the increase in modeling error associated with fixing the

response time parameters at their average values, when added to the

increase in modeling error associated with fixing the remaining
(i.e., noise) parameters, is less (sometimes substantially so) than

the error increase computed when all parameters are fixed at
average values. Thus, we cannot simply explore the parameters one

at a time to determine their individual contributions to the total

modeling error.

Lack of additivity arises from the non-orthogonality of the

parameter set. In general, there is some overlap in the effects
that individual prameter variations have on model predictions, so

that a change in one parameter can be partially (if not entirely)

offset by compensating changes in one or more of the remaining

parameters. One could attempt to derive a new, orthogonal, set of
independent model parameters through a linear transformation of the

OCM pilot parameters; but this would likely result in different

parameterizations for each data set, thereby hindering
interpretation of the model analysis.

As a final comment, we note that cross-comparison procedure

adopted in this study is a relatively conservative scheme for

assessing the significance of changes in pilot model parameters.

By allowing all but the test parameters to be re-optimized, we

favor non-rejection of the null hypothesis that a fixed set of

parameter values can provide a near-optimal match to two or more

sets of experimental data.
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APPENDIX 8

LIMITATIONS ON PSYCHOMOTOR PERFORMANCE

Subjects well-trained on relatively wide-band, single-variable

tracking tasks tend to reveal similar performance capabilities as

characterized by the independent (or "pilot-related") OCM

parameters. When subjects are not fully trained, however, or when

the controlled element is relatively low-band (or high order),

systematic deviations from nominal parameter values are observed.

Such differences are generally in the direction of degraded

performance capabilities.

In this Appendix we explore certain hypotheses for these

systematic parameter variations, with emphasis on the notion that

deficiencies exist in the pilot's internal model of the task

environment. Two classes of manual control situations are

analyzed: (1) tasks in which subjects have been trained to

near-asymptotic levels of performance, and (2) tasks in which the

effects of training have been studied.

E-1 Effects of Task Environment on Asymptotic Performance

Identified parameters for various single-axis tracking tasks

are given in Table El. Stated performance objectives were either

to minimize simple mean-squared error or to minimize a weighted sum

of mean-squared error and mean-squared plant acceleration. In all

cases, subjects were given knowledge of performance after each

trial and were trained to an apparent asymptotic level of

performance before data collection was begun. Descriptions of

experiments involving each of the simulated plant dynamics can be
found in the references cited at the end of the Appendix. (Some of

the model results have been recently obtained and are therefore not

found in the references.)

Plant dynamics may be described as follows:
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TABLE El

PILOT-RELATED MODEL PARAMETERS, FIXED-BASE TRACKING,
TRAINED SUBJECTS

Config. Pilot-Related Parameters
Index Plant Dynamics Ref. Pe Pe T Tn G

200
K s+200 1 -21.0 -19.5 0.17 0.082 .40

2 K/s 2 -23.6 -18.2 0.15 0.073 .0092

3* K 22 2 -18.5 -17.6 0.26 0.14 .0011
s s2+V-.2.s + 22

4* E 1 2 -22.4 -13.3 0.35 0.18 .0011

s_ s +v2s + I
K .5 19

s+5 " S+.19 3 -22.1 -16.6 0.19 0.13 --

6 K/s-2 . 9 e-" 4 - 4.6 -21.0 0.21 0.11 .027
_____s+19

7** (approximate 2nd-order) 5 -10 -20 0.20 0.13 --

8** (approximate 3rd-ordel 5 -10 -20 0.20 0.19 --

Pe = displacement observation noise, dB

P = rate observation noi3e, dBPe

T = time delay, seconds

Tn = motor time constant, seconds

G = relative cost of control 5ate, relating (lbs/sec)2

control rate to (arc-deg) error.

*Observation noise of about -19dB associated with perception
error acceleration.

**Approximate pilot parameters determined from manual search.

References: (1) Levison (1981);- (2) Levison (1971); (3) Levison,
Lancraft, and Junker (1979); (4) Levison (1980); (5) Levison,
Baron, and Junker (1976)
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Configuration 1: Proportional control. (The pole at 200

rad/sec was introduced primarily to facilitate model

analysis.)

Configuration 2: Rate control.

Configuration 3: Rate control plus 2 rad/sec 2nd-order
Butterworth filter.

Configuration 4: Rate control plus a 1 rad/sec 2nd-order
Butterworth filter.

Configuration 5: Approximate roll-axis fighter response

characteristics including simulator lag.

Configuration 6: Acceleration control plus simulator lag and

delay.

Configuration 7: High-order plant having approximate

acceleration control in the mid frequency range.

Configuration 8: High-order plant having approximate

acceleration-rate control in the mid frequency range.

The following parameters are shown in Table El: observation

noise/signal ratios for error and error rate; time delay; motor
time constant; and, for studies in which tracking error was
indicated by the parallel displacement of an error bar from a

reference bar, the relative weighting on cost of control rate.
Motor noise/signal ratios were also identified but are omitted from
the table because of their high variability and relatively small
contribution to the overall matching error. For two of the

configurations, an observation noise/signal ratio was also

identified for error acceleration.
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Except for the higher-order plants, model parameters appear to
lie in a reasonably small range: observation noise on the order of

-20 dB, time delays in the range 0.15 to 0.2 sec, and motor time
constants of about 0.1 sec. These values have been typical of
those used to obtain model predictions in the absence of
experimental data.

Careful inspection of the model results, however, reveals

certain trends: the motor time constant appears to increase with
the order of the plant; large observation noise/signal ratios are

associated with perception of error for the K/s2 and higher-order

plants; and a relatively large delay is identified for the K/s

plants cascaded with low-bandwidth filters.

Now, since all subject populations were well trained, and

since different groups of subjects tend to perform the same on a
given task (given equivalent training), it is unlikely that these

differences in pilot-related model parameters reflect different
inherent information-processing capabilities among the experimental

subject populations. We are left with two more likely explanations
for the apparent trends: (1) subjects were motivated differently

by the different task configurations to perform to capacity, and
(2) internal modeling difficulties associated with higher-order

plants have been reflected as differences in
information-processing-related parameters because of modeling

constraints.

Motivational factors may explain the relatively large
observation noise/signal ratios associated with error perception.
A sensitivity analysis of predicted rms tracking error to

observation noise will show that, for K/s2-1ike plants, performance

is considerably more sensitive to noise on error-rate than to noise
on error displacement. (This is not unexpected, since the pilot's
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control strategy in such tasks is largely to act as a

differentiator.) If we assume a workload penalty for reducing

observation noise [6], then the noise/signal ratio exhibited in a

given task may reflect a tradeoff between minimizing tracking error

and minimizing attentional workload.

We are not yet in a position to comment on the apparent

task-related changes in time delay. A significance test of the

type described above needs to be performed to determine whether or

not the identified differences in delay are meaningful. (As we

shown in Appendix D, apparent learning-related differences in time

delay failed the test of significance.)

Differences in motor time constant are more interesting in

that they are largely significant and cannot be entirely explained

on the basis of performance sensitivity.

Because the relationship between motor time constant and

relative control-rate weighting is task dependent, we should first

ascertain whether or not the subjects are simply maintaining

relatively constant performance indices across tasks.

Inspection of the right-hand column of Table E2 refutes this

hypothesis. Relative cost of control rate varies over two orders

of magnitude among the various tasks for which meaningful

comparisons can be drawn. Clearly, motor time constant is a more

consistent descriptor of pilot performance limitations than is

relative cost of control rate.

To test the hypothesis that motivational factors influenced

the motor time constant, model analysis was performed to determine

the sensitivity of rms tracking error to rms control rate. Table

E2 presents the predicted sensitivity (fractional change in rms

error per fractional change in rms control rate) for selected task

configurations. For each configuration, the sensitivity is shown

for the Tn that best matched the data.
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TABLE E2

SENSITIVITY OF MS ERROR TO MS CONTROL RATE

e u
Config. T - -

Index n ae u

2 .07 -.26

3 .14 -.20

5 .13 -.27

5 (with platform motn) .09 -.04

6 0.11 -.30

8 0.19 -.08

Configurations defined in Table 2.
T indicated for best match to data.n

As the sensitivities range from -0.04 to 0.30, we must reject

the hypothesis that the subjects selected a motor time constant to

reflect a consistent tradeoff between tracking performance and

control activity. Most compelling are the differences in

sensitivity shown in the 3rd and 4th rows of Table E2, which

contain results for the same tracking task with and without cuing
provided by whole-body motion. When motion cues were provided, the

subjects operated in a region where error performance was much less

sensitive to response bandwidth than when motion cues were absent.

One must conclude, at least for this case, that the motor time

constant was related more to the quality of information available

than to the relative effectiveness of control activity.

As shown in Appendix D, the motor time constant is not only a

function of the specifics of the control task, it also appears to
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be a function of the pilot's state of training. Now, the

pilot-related model parameters presented in this discussion and in

the preceding discussion of learning effects were obtained with the

OCM structured to include a perfect internal model of the task

environment. It is possible, then, that what appear to be task-

and training-related differences in motor time constant (and

perhaps other parameters as well) are reflections of imperfect

internalizations of the task by the experimental subjects. This

issue is discussed further in the main text.
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ABSTRACT

The effects of a multiplicative motor noise model on the
optimal-control human operator model have been analyzed. A study
of the interaction between multiplicative motor noise variance,
plant dynamics, and predicted operator response behavior shows
that, in general, an increase in motor noise variance produces a
decrease in operator gain and a decrease in high-frequency remnant.
An increase in multiplicative motor noise variance is also
reflected by an increase in the effective motor time constant; in
the absence of a cost penalty on commanded control, the motor time
constant equals the motor noise variance.

INTRODUCTION

A substantial body of manual control data, obtained in a
variety of laboratory tracking tasks, has been analyzed with the
"optimal-control" pilot/vehicle model. For many of these studies,
pilot response behavior has been reflected in terms of a relatively
invariant set of values for pilot-related parameters; specifically,
a "motor time constant" of between 0.08 and 0.1 seconds, a "time
delay" of between 0.15 and 0.2 seconds, and an "observation
noise/signal ratio" of about -20 dB 1-3. These tasks have largely
involved wide-band dynamics with minimal delays.

Consistent deviations from these "nominal" values have been
noted for certain kinds of tasks. Of particular interest here are
the larger values for motor time constant (implying reduced
operator bandwidth) that have been found for tasks involving
control of slowly-responding systems 4-6.

The predictive capability of the optimal-control model will be
enhanced if we can find either an alternate set of pilot-related
parameters that are more nearly invariant, or a consistent rule for
adjusting the current parameter set according to the
characteristics of the task. The apparently consistent trend of
the motor time constant with resoect to the resoonse
characteristics of the controlled element suQcests that this Qoa"
is achievable.
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In this paper we explore the possibility that changes in motor
time constant reflect, in part, a multiplicative motor noise
process underlying human controller response behavior. The notion
of a multiplicative noise process is consistent with the empirical
finding that, in idealized control situations, both motor noise and
observation noise appear to scale with the variances of
corresponding control and display variables. In previous studies,
these processes have been considered to affect only the estimator
(Kalman filter) portion of the pilot model; in this paper, however,
we consider the multiplicative motor noise process to influence the
control gains.

OPTIMAL HUMAN OPERATOR MODEL WITH MULTIPLICATIVE MOTOR NOISE

The following linearized description of the vehicle dynamics
will be assumed:

i(t) - Ax(t) + Bup(t) + EWg(t) (2.1)

where x is the n-dimensional state vector including the variables
corresponding to the gust states, up is the r-dimensional operator
input, and wg is the white Gaussian process noise with covariance
Wg6(t-s). We will assume the following multiplicative motor noise
model for the human operator's input dynamics:

api(t) = uci(t) + Uci(t)wmi(t) (2.2)

where uci is the i'th component of the commanded control rate in
the absence of motor noise and wmi is the i'th component of the
r-dimensional motor noise which is a white Gaussian process with
covariance Wm 6(t-s). The effective additive noise, uclwm., in
equation 2.2 will have the following properties for the stati'nary
case:

Euciwmi - 0 (2.3)

E[uci(t)wmi(t)][uci(s)wmi(s)j = (Eu2ci)Wmii6(t-s) (2.4)

Comparison of the covariance of the effective additive noise
with that of the empirical relationship in 1 reveals that the
variance of the multiplicative motor noise in the model above
corresponds to the motor noise ratio in 1 with a scale factor of

. The multiplicative motor noise model specified by equation 2.2
would also allow correlation between the noise components wmi for
the multi-input case through the off-diagonal elements in the motor
noise covariance Wm . The task requirements for the human operator
will be expressed by the standard quadratic cost functional:
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J=IE f(xo(t)Qxo(t) + uc(t)Guct)dt (2.5)
7.0

where xo is the state vector augmented with the operator input Up.

It can be shown 8-10 that under suitable regularity conditions
the optimal human operator control in the space of linear controls
with full state feedback will be given by:

Uc*(t) -Fxo(t) (2.6)

where the feedback gain F is defined by

F = (G+P(K))-IBoK (2.7)

with the positive-semidefinite matrix P(K) defined by

P(K)ij - Kn+i,n+jWmji i,j=l,2,...,r (2.8)

where K is the positive definite solution of the algebraic Riccati
equation

KAc + A K + Q - KBO(G+P(K) 1BoK = 0 (2.9)

with the augmented system matrices Ao and Bo (of dimension n+rxn+r
and n+rxr, respectively) given by

A0 -=~ A ] Bo = [0] (2.10)

The comparison of the Riccati equation above with that given
in reference 1 shows that the control dependent noise effectively
increases the control weighting G further by the term P(K) relative
to the case with additive motor noise. For a fixed set of control
weightings Q and G, the effect of the multiplicative motor noise is
to reduce the control gains of the human operator from their values
corresponding to the additive motor noise case. This effect of the
multiplicative motor noise model is expected since the control
effort has some destabilizing effect on the system through the
control dependent noise. This relationship between the motor noise
and the control gains should be useful in modelling the learning
behavior of inexperienced human operators 1l.

The term G+P(K) in the Riccati equation 2.9 can be considered
as an effective control weighting matrix. If the multiplicative
motor noise covariance Wm is chosen to be positive definite, then
P(K) will be positive definite even when the commanded control is
not penalized in the human operator's cost function (i.e. G*O).
This result is intuitively pleasing in that the multiplicative
motor noise models the human operator's inherent constrained

F-3
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control capability. That is, even if no explicit or subjective
penalty is associated with control activity, the predicted control
gains will remain finite.

While it is possible to find an equivalent commanded control
rate weighting, Ge, for any solution of the Riccati equation (2.9)
corresponding to a certain Q,G combination (Ge=G+P(K)), the
multiplicative motor noise model brings new interpretations to the
motor time constant and control gains and provides a link between
the human operator's control gains and the motor noise ratio.
These issues will be discussed in the later sections. In the
multi-input case, the equivalent control rate weighting Ge would
have off-diagonal terms when the control dependent noise components
are correlated. Therefore, trial and error search for an
equivalent control rate weighting Ge would be more complicated for
the multi-input case.

The effect of the multiplicative motor noise on the human
operator model characteristics has been studied using several plant
dynamics. A lower order Riccati equation (2.9) excluding the gust
state variables is first solved using an algorithm similar to that
in 0 and then the the gains on gust variables are obtained by
solving a linear algebraic equation similar to the deterministic
case. For these studies, the filtering part of the human operator
model has been taken from the pseudo motor noise model in 4. In
order to differentiate between the different motor noise ratios, we
will call the one used for the control computations as the control
motor noise ratio, the one used for the estimator computations as
he filter motor noise ratio (called pseudo motor noise ratio in
), and the real driving motor noise as the actual motor noise
ratio. In the sequel, "motor noise ratio" without an explicitreference will imply control motor noise ratio.

EFFECTS ON THE MOTOR TIME CONSTANT

In the single input case, with G and Wm scalars in (2.8) and
(2.9), (G - g, Wm - v), the motor time constant, TN, defined as the
inverse of the gain on pilot input up, will be given by

TN a + v (3.1)
P

where p is the lower right element Kn+ln+l of the solution of the
Riccati equation (2.9). As can be seen from equation (3.1), the
motor time consant is composed of two terms: The first one, g/p,
is directly proportional to the control rate weighting in the human
operator's objective function. The second term, v, is equal the
variance of the multiplicative motor noise and corresponds to the
motor noise ratio defined in4, scaled by a factor of w.

7
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The effects of multiplicative motor noise on the optimal human

operator model has been studied using the following set of vehicle
dynamics:

Rate Dynamics:

x-- 0: [ x +.u ilw 3.2

y= 1. .OJx+11 3.3

Yaw Dynamics:

[-1. 0. 0. 0. 0.] -0- .1
533. 0. 0. 0. . 53 0.

x= -16. 1. -33.3 0. 0 X+ -16 u+ 0 w

0. 0. 19. -19. 0. 0. [U 3.4
0. 0. 0. 1. 0. 0

0O. O. O. O. 1

y = 0. 0 0. 1. 01x
0. 0. 0. 1. 0 3.5
0. 0. 19. -19. 0
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Filtered Rate Dynamics:

*=.[-2 0') 0 + 'Ju{'*] w 3.61. 0. 0. 0. 01 0.
y [3. 1. 01 0.] x3.7[0 0 o . 1. 0.

In each case, T = .2 sec. for the human operator time delay,
-90 dB for the actual motor noise ratio, -40 dB for the filter
motor noise ratio, -20 dB for the observation noise ratio were used
for the model parameter values. The plant with the rate dynamics
represent a velocity control task under a velocity disturbance
created by a first order noise spectrum with a break frequency 2
rad/sec. The filtered rate dynamics is the same plant as the rate
dynamics with a two-pole Butterworth filter of cutoff frequency 1
rad/sec. Yaw dynamics represent k/s2 dynamics with approximately
60 msec. time delay.

The effects of different multiplicative motor noise levels on
the motor time constant have been analyzed using the dynamics
above. The control rate weighting, g, was chosen to obtain a
nominal value of .1 sec. for TN at the -40 dB motor noise level.
In general, an increase in the motor noise level produced a higher
motor time constant TN. The results are tabulated in Table I.
Bringing up the motor noise ratio to the -20 dB level resulted in
a 10% increase in the motor time constant TN compared to the
negligible motor noise case (-40 dB) in all of the three dynamics
tested.

As predicted by equation (3.1), the motor noise ratio starts
effecting the motor time constant TN when its value is around -20
dB. This level corresponds to a motor noise ratio of v-.0314.

F-6
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Since the term p in (3.1) is a function of both g and v and since
increasing v results in a higher p, the term g/p decreases as the
motor noise ratio is increased to -20 dB level. However, in all of
the three cases tested, the decrease due to the g/p term was more
than compensated by the increase in the motor noise ratio v.

When the commanded control is not weighted (i.e. g-0), a motor
noise ratio of -15 dB, as predicted by equation 3.1, resulted in a
motor time constant TN. l sec for all the dynamics tested. In this
case with no penalty on commanded control rate, the motor time
constant TN is equal to the variance of the multiplicative motor
noise (3.1). That is, the motor noise ratio value completely
specifies TN independent of the plant dynamics. In this case, the
human operator's cost function (2.5) would only consist of
mean-squared error which is the real objective in a compensatory
tracking task.

EFFECTS ON THE HUMAN OPERATOR TRANSFER FUNCTION

The effects of varying the multiplicative motor noise variance
on the human operator's equivalent describing function have been
analyzed by using the plant dynamics in the previous section.
Figure I shows the results for the filtered rate dynamics.

In general, for increasing motor noise ratio, the human
operator's equivalent describing function gain decreases as
expected with greatest variation occurring for frequencies w <1
rad/sec andw>8 rad/sec. Motor noise ratio variation has a smafl
effect on thie phase of human operator's transfer function. The
greatest change is around the 8-10 rad/sec range since increasing
the motor noise ratio to -17 dB from the -40 dB level results in
the shift of pole due to the motor time constant from 10 rad/sec to
8.5 rad/sec. "Remnant" (control activity not correlated with the
tracking input 7) decreases at high frequencies (w>8 rad/sec) as
the motor noise ratio is increased to -17 dB level. This result is
to be expected since the bandwidth of the controller is decreased
due to the increase in the control dependent noise. These results
indicate the conservative nature of the feedback controller based
on a multiplicative motor noise model. In summary, an increase in
the multiplicative motor noise variance causes a decrease in the
gain and, at high frequencies, a decrease in the remnant for the
human operator's equivalent describing function.

VARIATION IN TN WITH BANDWIDTH

In this section, we will discuss how the multiplicative motor
noise model can be used in explaining the inverse variation of the
motor time constant TN with plant bandwidth. For this analysis,
the following set of dynamics are used:
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KSG Dynamics

[is: 01 x+ [(0..11

y [1.0. .] x+ [o u (4.2)

BWl Dynamics

i10. 0. 0. o [ (4.3)
0. 1. -1.414 -1x+[ U+ 10.0-2. 0. 0. LO..0. 0. 0. 0.

y 0. 0. 0. .02]x

= . 0. .02 o. x (4.4)
0. .02 -.028 -.02

BW2 Dynamics

[-2. 
0. 0. 

0 1y 10. 0. 0. 0. x2 (4.6)0. i. o kojp4. -2.82 -4.x 0. u 0.

0. .08-0.056 -.08J
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These dynamics correspond to three laboratory tracking
experiments. The plant with the KSG dynamics represents velocity
control task under disturbance. BWl and BW2 dynamics represent the
same plant with a two-pole Butterworth filter of cutoff frequency 1
and 2 rad/sec, respectively. Model matching analysis of the actual
data has shown that an increase in the value of TN from .06 sec to
.15 sec is needed as the bandwidth is decreased (change from KSG to
BWl dynamics). With the standard human operator model, these
different values of TN are obtained by selecting a different
control rate weighting, g, value for each case. As Table II shows,
with the multiplicative motor noise based model, it is possible to
match the variation in TN with only one value for the control rate
weighting g and the motor noise ratio v.

CONCLUSIONS

The effects of a multiplicative motor noise model on the
optimal-control human operator model have been analyzed. A study
of the interaction between multiplicative motor noise variance,
plant dynamics, and predicted operator response behavior shows
that, in general, an increase in motor noise variance produces a
decrease in operator gain and a decrease in high-frequency remnant.
An increase in multiplicative motor noise variance is also
reflected by an increase in the effective motor time constant; in
the absence of a cost penalty on commanded control, the motor time
constant equals the motor noise variance.

For the cases explored in this analysis, variations in the
motor time constant were accounted for by fixed values assigned to
motor noise ratio and cost of control. Thus, even though a new
parameter was added to the optimal control model, the number of
degrees of freedom required to account for variations in
controlled-element dynamics was actually reduced! Further work is
required to determine the extent to which a fixed set of cost and
noise parameters can explain human operator behavior across a
variety of task conditions, including the differences observed
between inexperienced and trained human operators ll.
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Dynamics Motor Noise Ratio g TNdB

k/s -40 4 x 10- 4  0.1
-4

k/s -30 4 x 10-  0.101
k/s -20 4 x 10- 4  0.11

yaw -40 1.58 x 10- 2 0.1

yaw -20 1.58 x 10 - 2  0.106

fk/s -40 8 x 10-6 0.1

fk/s -20 8 x 10- 6 0.107

fk/s -17 8 x 10 - 6 0.113

TABLE I. Variation of TN with Respect to Motor

Noise Ratio

Motor Noise
Dynamics Ratio dB g TN

k/s -14.97 0. .i

yaw -14.97 0. .1

fk/s -14.97 0. .1

TABLE II. Neuromuscular Delay with No

Penalty on Commanded Control
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Figure 1. Human operator Transfer Functions Variations
Due to Motor Noise Ratio (filtered rate dynamics)
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APPENDIX G

POTENTIAL ADAPTIVE-CONTROL SCHEMES FOR MODELING

PILOT LEARNING BEHAVIOR

prepared by

Timothy L. Johnson

G.A Modeling the Effects of Training

Even within the narrow context of continuous manual tracking

tasks, the effects of learning during training may be difficult to

represent. While this discussion is primarily concerned with

perceptual-motor learning that occurs during repeated practice of a

fixed task, factors such as changes in environment, displays,

controls, operating strategy and workload may have significant

effects and must be carefully designed if meaningful results are to

be obtained.

The process of perceptual-motor learning, in this context, may

be viewed as having two inter-related aspects: (1) developing an

understanding of the system being controlled, and (2) improving the

strategy for controlling it. These effects are difficult to

observe independently, though they may occur at different rates.

To distinguish them is useful primarily for the construction of
general purpose models of the effects of learning; no physiological

basis is implied. In many situations, the learning process reaches

an asymptotic state where the subject is unable to achieve further

performance improvement. In this limit, the Optimal Control Model

(OCM) of the well-trained, well-motivated pilot has been thoroughly
validated. Thus, it would be desirable to have a model of the

pilot-in-training which converged to the OCM as more and more

experience were accumulated.

The OCM can in fact, be generalized to include the major

effects of training, and can thus serve as the basis for a model of

G-1
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perceptual-motor learning. The OCM of the trained pilot contains

an optimal filter which estimates the states of the system being

controlled, followed by optimal state-feedback gains. The filter

and gain parameters are both selected on the basis of the dynamics

of the actual system being controlled on the implicit assumption

that all useful information about the system is exploited by a

trained pilot. A natural model of the pilot-in-training is based

on the assumption that the essential structure of the OCM is

retained, while the parameters of the model* are adaptively

modified during the training process.

The adaptive optimal control model (AOCM) of the effects of

training must contain some mechanism for updating the internal

model parameters of the optimal filter and state-estimate feedback

gains. Desirable properties of this adaptation mechanism are:

(a) Stability of the pilot's control and estimation strategy,

whenever possible, during training.

(b) Convergence of the gains of the adaptive controller to those of

the OCM as asymptotic performance is achieved.

(c) "Design" parameters in the adaptation algorithm to allow for

different rates of learning by different trainees. These are in

addition to the control and state-weighting parameters in the OCM.

(d) Reasonable assumptions about the learning process.

These properties are not readily guaranteed, because the adaptation

process,** unlike the control process, is highly and inherently

nonlinear.

* And possibly model order and model structure.

** To be consistent with the terminology used by the control-theory
community, we use the term "adaptation" here to refer to what we
have called "learning" in the main text; namely, the adjustment of
the control strategy over time to improve closed-loop system
performance.
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Although the development of an adaptive model of pilot motor

learning is not a routine undertaking, several recent developments

in the theoretical literature have established a firm basis upon

which to build. The topic of adaptive control has come to subsume

the issues of on-line parameter identification (which has

previously been regarded as a separate topic) as well as adaptation

in control strategy and gains; hence, most of the theoretical

results to be reviewed lie in this domain. A survey of the

available techniques and results is given in the following

subsection. The final subsection concludes with a preliminary

assessment of the applicability of these techniques to the problem

of modelling human operator skill development.

G.2 Survey of Adaptive Control and On-Line Identification Methods

Since the literature in these topics has grown explosively

within the last decade, only the key results which have bearing on
the fundamental issues of pilot learning can be reviewed here.*

The term "learning" has been used to characterize a variety of

situations in which a person or device starting from some basis of

prior information, accumulates additional information about an

environment and uses this total information to interact with the

environment more effectively in performing some task or tasks. In

very general terms, it can be established that the accumulation of

information always implies the potential for improved task

performance.

Interactive learning processes are known to involve a

trade-off of three conflicting objectives: control, estimation, and

identification (4]. The available inputs to the system may, and

often must, serve all three objectives. In general, the types of

control inputs required to identify system structure and

* More general surveys are given by Astrom and Bohlrn [I, Saridis
(21 and Landau (3].
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parameters, and to estimate the current system state on the basis

of incomplete or noisy measurements, lead to increased control

energy and degradation of control performance (in the short term).

These phenomena are observed for both continuous-state and

finite-state systems. The use of control inputs for both

identification and control purposes is termed "active learning".

Automaton (finite-state) models of learning (in the noise-free

case) require input-output experiments; from these experiments the
state transition and readout maps can be constructed by traversing

a decision tree, and thereafter the system may be controlled [5,61.
These models illustrate the general importance of using inputs for

identification and estimation as well as control. They provide a

basis for the modelling of human performance in decision tasks with

a finite number of outcomes.

The dual use of controls for these purposes in

continuous-state systems is still not fully understood,

particularly in the case where system structure (as well as

parameters) is to be identified [7,8]. In the identification of

linear systems, inputs which are sufficiently *rich" in frequency

content must be used to ensure uniqueness and robustness of

parameter estimates [91 ; this excitation condition may be satisfied

by autonomous disturbances or operator inputs, or both. Under

closed-loop control, there are fundamental limitations on the

parameters which may be identified in the absence of disturbance

inputs [10]. In linear or almost-linear systems, the choice of

input often contributes relatively little to estimation accuracy,
but even in closely-related situations where quadratic measurement

nonlinearities occur, input probing is normally required in order

to achieve uniqueness of state estimates. In the very special case

of linear systems with gaussian noise inputs and quadratic
performance criteria, when the system structure and parameters are

known, the identification problem does not exist, and the control
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and estimation problems separate because estimation accuracy is

independent of the control input wave form. This is the basis'for

the pilot OCM.

When the controller does not inject inputs explicitly for

purposes of estimation or identification, forms of learning which

have been termed "passive learning" may still occur (4]. One form

of passive learning is on-line adaptation of parameters in an

internal model of the system and/or in the controller gains.

Another manifestation of passive learning is the use of a cautious

control strategy (111. Many of the methods of statistics which do

allow for identification of system structure within limited classes

of models are also passive [12].

At present, passive learning is better understood, in

theoretical terms, than active learning. In the context of

developing appropriate response strategies for continuous tracking

tasks, it would appear that passive learning models might be

sufficient to characterize all but the first few experiences with a

system; it is the longer time-scale of learning (i.e., training)

with which we are most concerned. Thus, the following more

detailed discussion pertains to the status of passive learning

theories.

A significant recent development in the theory of passive

adaptive control is the unification of model-reference and

prediction-error methods which has resulted from successful efforts

to prove the stability of certain adaptive control schemes

[13-15]. A block diagram illustrating the synthesis of these ideas

is shown in Figure GI. The important feature is that the reference

model tracking error, e*, and the error prediction, e, can be

combined (e) in order to produce convergent parameter estimation

schemes. Previous algorithms which relied exclusively on either e*

or e were known to fail more frequently due to loss of stability in

G-5



Report No. 4645 Bolt Beranek and Newman Inc.

either parameter estimation or control, respectively.
Representative examples of some of the available algorithms are now
reviewed.

___ __ ___ __ ___ __ ___ __ REFE NC

i . -I MODEL

COMMAND +
INPUT

REGULATOR

i!I

PARAMETERESTIMATOR

Figure GI. General Adaptive Control Block Diagram

G.2.1 Recursive Maximum Likelihood Methods

The plant parameters are viewed as random , tables with known
prior distributions; their values during an experiment are observed
indirectly through dynamic measurements of the plant outputs. For
the case of linear plants with gaussian disturbance inputs and
measurement noises, a suboptimal stochastic control strategy is to
update the control and filter gains of an LOG control law in
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accordance with the current estimates of the plant parameters
obtained by a recursive maximum-likelihood algorithm.

Referring to Figure G1, the reference model is absent in this

case. The error predictor is a Kalman filter based on current

parameter estimates, with innovations e, and the parameter

estimator is an implementation of the recursive maximum-likelihood

algorithm; the regulator also contains a copy of the Kalman filter

and gains based oyn the current parameter estimates.* In practice,
t&, controller is constrained to be finite-dimensional by selecting
parameters from a finite set and by computing and comparing the

likelihoods of each parameter set, a scheme suggested by Lainiotis

(161. Two implementations of this scheme, for adaptive control of

an F8 aircraft, have been evaluated. Stein, et al (171 used a

control law based on a linear combination of the control laws for
each parameter set, with weightings based on the likelihood ratios,
while Athans et al 118] used a control law which switched control

gains corresponding to the parameter set with the currently
greatest likelihood; the first method yielded better performance,

but neither method consistently converged to the parameter set
which was "nearest" to the parameters of the actual plant. Random

switching between parameter sets could occur, depending on
properties of the plant disturbance or observation noise sample.

In certain cases these phenomena resulted in instability of the

control law as well as failure of convergence to the correct

parameter set, as might be expected. In retrospect, the design

efforts illustrated the importance of the stability and convergence
analysis in adaptive control law design. Recursive maximum
likelihood algorithms are perhaps the closest practical

approximation to the intractable optimality conditions obtained

* Figure G1 is a conceptual block diagram; the practical
implementations of most of the methods discussed can be developed
from it by standard equivalence transformations.
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from stochastic control theory, even through their stability has

still not been fully investigated. Ljung [193 demonstrated

inherent limitations on identifiability of closed-loop control

systems, which imply that the choice of parameter sets for such

algorithms must be carefully undertaken. The apparent rate of

convergence in the parameter estimates of these algorithms is

related to the assumed prior variances of the parameters, the plant

noise statistics and the control law implementation.

G.2.2 Recursive Least-Squares (RLS) Algorithms

These algorithms are generally based on an autoregressive

moving-average (ARMA) model of the plant rather than a state-space

model; well-known methods can be be usP to transform a

sampled-data state-space model into autoregressive form. The

parameterization of linear state-space models ia inefficient and

the issue of uniqueness of parameter estimates can be treated more

conveniently for ARMA models [20]. The parameters are often viewed

as being deterministic, but with initially unknown values;

estimates of these values are continuously updated in order to

achieve tracking of the response of a reference model.

Referring to Figure GI, the error predictor includes an

autoregressive plant model, while the parameter estimator involves

a recursive least squares algorithm. An advantage of the ARMA

formulation is that minihum-energy control gains are computed

directly by the parameter estimator. Goodwin, Ramadge and Caines

[15] have recently presented a multi-input, multi-output (MIMO) RLS

adaptive control algorithm which is, in effect, a generalization of

the single-input, single-output (SISO) self-tuning regulator

algorithm originally presented by Astrom and Wittenmark [21] and

cast into the desired form by Clarke and Gawthrop (221. Under

certain conditions, they are able to guarantee a weak form of

stability and convergence for the algorithm. One of these
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conditions effectively places a limit on the convergence-rate

parameters of the RLS algorithm, which are otherwise free to be

specified by the designer.

G.2.3 Model Reference Methods

Original model-reference methods [3] overlooked the importance

of the error-predictor (see Figure GI) or resorted to

numerically-sensitive differentiation techniques to approximate its

effects. Monopoli [23] recognized that an "augmented error" signal

(like e in Figure Gl) would be required to establish Lyapunov

stability of such algorithms. His convergence proofs were improved

and generalized by Feuer and Morse [24] and Narendra and Valavani

(14]. Egardt presented frequency-domain synthesis techniques for

RLS model-reference controllers and illustrated how the two

approaches could be viewed in a unified framework 1131.

G.2.4 Adaptive Pole-Placement Methods

Egardt's technique for synthesis of direct-time ARMA-type

adaptive controllers can also be regarded as a pole-placement

method (i.e., the poles of the controlled system are to be aligned

with those of the reference model). A continuous-time adaptive
pole-placement method for single-input, single-output plants has

also been presented by Elliot and Wolovich [25]. The parameters

for an observer-based compensator are determined from the reference

model and are updated according to a gradient method, based on the

current estimates of plant parameters. The plant parameters, in

turn, are identified based on filtered estimates of the derivatives

of plant inputs and outputs. The convergence of this method,

unfortunately, depends on a richness condition imposed on reference

inputs (or equivalently, persistently exciting disturbances);

further study of this requirement is necessary. The advantages of

this algorithm are that it does not require stable or minimum-phase

plants and that it includes design parameters through which the
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rate of convergence of the controller gains and the identifier may

be adjusted independently.

G.3 Candidates for Pilot Models with Learning

Hone of the methods which have been reviewed possesses all of

the previously-stated properties which would be desirable in a
model of pilot learning. Perhaps the best available candidate is

the RLS adaptive control law of Goodwin, Ramadge and Caines [15].

This is a MIMO method which has some established convergence

and stability properties. It is relatively simple to implement and
contains design variables which can be used to adjust the rate of

convergence of the parameter estimates. Possible drawbacks may

arise from the fact that the control law is of minimum-energy type

and may be unstable for systems (e.g., non-minimum phase systems)

without stable inverses; as a consequence, there is no provision

for trade-off between tracking errors and control energy, nor for

independent rates of adaptation of control and identification

algorithms. For SISO systems, the somewhat more complex algorithm
of Elliot and Wolovich [25] may also deserve further consideration.
While it does not suffer from minimum-phase or stability

requirements, the restrictiveness of the richness condition on the

plant inputs is not yet known. The features of being able to

specify rates of parameter and control law adaptation are very
desirable. It is likely that the method can be generalied to MIMO

systems and that the identification procedure can be improved so as
to remove the reference input restrict on. It should be noted that

real systems are always subject to some disturbances and that
humans experience extreme difficulty in controlling unstable

nonminimum phase systems; hence the theoretical limitations of

Elliot and Wolovich's algorithm might not correspond to man-machine

systems which would reach a testing stage.4!
G-10 I
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The convergence of these adaptive control laws 6o an optimal

control pilot model can be enforced by using the OCM as a reference

model in the design. This raises the conceptual issue (which is

not addressed in the OCM) of how the pilot could know about such a

reference model prior to ever experiencing the system. An

alternative possibility is to base the reference model on some
"desired handling qualities", which are best matched to the pilots'

manual control abilities and would be presumably known through

experience.

The issue of identifying system structure during the learning

process is not fully addressed by these algorithms, and it is in

fact likely that the trainee will make some initial input-output

experiments in order to identify general system properties. These
may have more the character of a decision process, as described

previously. It is possible to simulate some aspects of learning by

initializing the parameter estimates of the algorithm to correspond

to those of a lower-order plant model, for instance.

In conclusion, the process of training-subsequent to initial

familiarization with a system - may be viewed as an adaptive

control process. Existing adaptive algorithms demonstrate many but
not all of the desired properties of an adaptive optimal control

model of a pilot-in-training. Additional research is required in

order to apply these ideas to human operator data.
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